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FOREWORD

This publication includes the individual papers of DAMPING '89 held
8-10 February 1989, West Palm Beach, Florida. The Workshop was sponsored
by the Air Force Wright Aeronautical Laboratories through the Advanced
Metallic Structures Advanced Development Program Office (AFWAL/FIBAA).

It is desired to transfer vibration damping technology in a timely
manner within the aerospace community, thereby, stimulating research,
development and applications.
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DAMPIM - A EY TO MORE, FASTER, FARTH, HIGH!ER

Major General Thomas R. Ferguson, Jr.
Deputy Chief of Staff for Technology

and Requirements Planning
Headquarters Air Force Systems Command

Andrews Air Force Base, Maryland

Vibration is everywhere. And where there is vibration, there is damping.
Most often, vibration is bad and damping is good. There are exceptions,
but since this conference is about damping, we will leave the undamping
crowd to their own devices.

After getting my primer on this subject, I was reminded that damping is a
complicated subject. In simple terms, vibratory response can lead to
cracked structure, defocused optics, or other types of degraded
performance. Historically, the damping in a vibratory system has been
"take what you get", called intrinsic damping. Only in the last few years
has damping been a design parameter. So let's begin with a scramble:
start the engines...on take off, light the burner. In my flying
experience with the B-52, it was be sure all eight were running and start
the Hound-Dogs on the roll...there's a lot of noise coming out of these
engines. During take-off roll, there are two paths from the engine
exhaust noise to the aft structure: one is direct, the other is reflected
from the runway. Take-off is typically the highest acoustic environment
the structure is exposed to. The skin panel responds to sound pressure
level as does a microphone and it vibrates. It can vibrate enough to
literally crack and break. The skin panel also re-radiates the sound into
the interior. That's called "thru transmission." That's also the
technical term for being able to hear people thru the motel wall, at least
the motels government per diem can afford in places like Boston and
Washington.

That aircraft skin panel also transmits vibratory energy into the
substructure--the stringers, frames, and bulkheads. So internal equipment
also gets hit with structural-borne vibratory energy at points like
mounting brackets and with acoustic energy on their covers. Internal
equipment can fail, malfunction or degrade to lower performance levels.
As our pilot retracts the gear and accelerates, the dynamic pressure
increases and the turbulent boundary layer, especially behind
protuberances, can create very high sound pressure levels. At about mach
0.9, the oscillating shocks have the same effect. When we maneuver,
especially transonically, the aeroacoustic levels on the leading and
trailing edges (and external stores) reach high levels. When we open
weapons bay doors, the open cavity acts like a giant whistle and the
internal structure and stores can be subjected to tones of extremely large
amplitude. Since we fly to fight, we carry weapons; we fly at ever-higher
dynamic pressures and maneuver at transonic speeds to survive: This makes
the vibroacoustics problem more severe. Today, to do our engineering
right, structures-and-vibration-and-damping-engineers must participate in
the original design of these modern flying machines.
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Vibration is also no longer an earthly problem. It is becoming a design
factor in satellites as well. Launch vibroacoustics typically cause the
highest vibration levels and can break equipment. There are also more
vibratory disturbances in orbit than you might think. There are always
imbalances in reaction wheels, momentum wheels, and control moment gyros
used for attitude control. Coolant flow, shifting solar arrays, liquid
slosh, gravity gradient, particle impact, to name just a few, are all
vibratory disturbances which, just for example, can degrade performance of
sensitive optics.

I shouldn't have to convince this audience--we know that vibration is
everywhere. Although the obvious is obvious to us, let's also acknowledge
that damping is a highly specialized subject. A damping engineer is a
specialist because he must first be a vibration engineer, who was probably
a structures engineer to start with. So, right off, we have a specialty
within a specialty within a specialty. The successful damping engineer
must know more than damping. He'd better know systems integration and be
very conversant about the operational environment. A prime example of
this is the highly successful "Damping Wrap" for the inlet guide vanes on
the engines used in the F-111F fighter. So many cracks were forming so
quickly that the inlet guide vane case had to be refurbished after TOO few
hours of service. Air coming into the engine is turned slightly by the
inlet guide vanes to get best performance from the rotating first stage
compressor. The IGV case consists of titanium inlet guide vanes welded to
inner and outer rings. Vibration was suspected as the cause of the cracks
which were forming in the heat affected zones of the welds. The intrinsic
damping was extremely low, and in this case, the dynamic magnification
factors at resonances were high. Obviously, the stage was set for a
damping engineer to really impress his boss. Adding damping to the inlet
guide vane was easy; developing a satisfactory damper wrap for a complex
systems operational environment was not. Sophisticated bonding technology
was used so that the damper wrap would adhere while exposed to the air
flow. The wrap had to be thin to minimize inlet blockage area, since
reduced air flow would affect engine performance. Engine stall
characteristics, anti-icing effectiveness, erosion, corrosion, and
durability were all investigated and proven satisfactory. The point
being...this was a complex interdisciplinary problem--solved very
successfully. This project has estimated cost avoidance savings to the
Air Force of $50M. Spin-off damping applications in similar situations
may well account for another $200 million. Other very recent
demonstrations of vibration-caused structural failures fixed by damping
are the A-7 center section leading edge flap, A-10 gun bay floor and side
wall, and F-111 spoilers. Once again the logistics improvements in terms
of dollars were significant. I should also add these improvements lower
the heart rate for our maintainers.
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For the most part, successful damping treatments have been of the add-on
variety. The hardware has been designed and a vibration problem rears its
ugly head. A damping treatment is designed and "added to" existing
structure. Once the hardware exists, add-on damping may be an extremely
cost effective solution. But it's better to avoid the problem altogether
and that can be done with integral damping. Commercial examples are
laminated valve covers, oil pans, and timing gear covers used in
automobile and diesel engines.

Integral damping is also the key to longer life, more durable aircraft
structure. The objective is increased sortie generation rate and reduced
maintenance cost. Since we often learn more from our failures, there's no
shame to admit there have been many unsuccessful attempts to design
damping solutions. I'm told you don't have to be in this business very
long to have been bit. In fact, you don't earn your damping wings until
you've been humbled more than once. I don't want to focus on this aspect,
but during breaks and at social opportunities it also pays to discuss the
failures as well as the successes.

DAMPING '89 is put together to detail the state of the art, but the
keynote role allows me latitude to summarize. A baseline of damping
materials and manufacturing processes is established. We can measure
properties of materials fairly well. Data banks on damping materials are
also established. You can analyze simply supported beams in closed form
and can perform finite element analysis of damped structure to predict
modal frequencies and damping limits. You can experimentally measure the
modal frequencies and damping of structure. There are a growing number of
successful add-on and integral damping applications and you have
quantified these successes in terms, pay-off terms, that management
understands. Damping, in fact, is a hot, new tool in the engineer's kit
bag. But it's good not to believe as the song goes "Oh Lord it's hard to
be humble when you're perfect in every way." What we already know is just
a glimpse of the future. There is still great opportunity. Therefore,
it's important to make good investment decisions as we plan the future.

As in most technical disciplines, the explosion in computational power,
coupled with advancements in damping technology, can greatly accelerate
our knowledge. Better dynamic test techniques are needed; a greater range
of materials properties should be measured and catalogued: and extensions
to analytical methods would really expand the range of applications. With
these wishes met, let's peer in the not too distant future and I'll make
some predictions:

o Measurement of the dynamic mechanical properties of viscoelastic
damping materials will be more accurate, more efficient, and have less
scatter.

o Existing materials will be screened for toxicity, flammability,
outgassing, corrosion, long-term environmental stability and others.
These are properties which are mandatory for system application.
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o A fully computerized data clearing center will exist soon.

o Wide-temperature range and low-temperature damping materials will be
developed.

o Approximate closed form analysis methods will come into use for
structures like thin plates and shells, brackets, pipes and tubing.

0 Approximate finite element analysis models will be developed as
preliminary design tools for damped structures such as satellite
equipment support structures.

o Computer aided design will yield optimum solutions by interacting
finite element analysis of damped structure with a data base of
damping materials.

0 Most aircraft sheet metal will be laminated, ditto for automobiles and
household appliances.

o Interest in damped composite structural materials will rise.

o Housings and circuit boards of avionics equipment will be damped.

o Logistics imperatives--maintainability and reliability--will dictate
much more use of damping.

0 And, some of you who think you'll be millionaires exploiting these
opportunities will probably go bankrupt because of Murphy. So,
maximize the opportunity this conference offers.

o Learn!!

o Go home and apply the technology: Be passionate...become zealots for
your work and the opportunity it presents.

o Share your successes and failures with as wide a technical community
as possible.

0 Think of yourselves as a team: Academia and practitioners in
commercial and military applications. All must play their roles to
see the most intelligent and widespread use of this technology.

I want to conclude with some non-damping thoughts. My boss, the AFSC
Commander, General Randolph, just gave a talk at the AF Association's
Tactical Air Warfare Symposium. He ok'd my use of some of his remarks
because the message is so important for all of us. That message is about
total quality management.

AAA-4



In the book, "A Passion for Excellence," Peters and Austin recall the
management style of General Electric's aircraft engine pioneer, Gerhard
Neumann when he worked with Claire Chennault's World War II Flying
Tigers. Neumann wanted make sure his maintenance people fixed aircraft
engines right...the first time. So each day he used to ask a few of his
squadron mechanics to "volunteer" to test fly in the Single-Seat fighter
they'd just repaired. The pilot would sit on the crew chief's lap, and
neither could sit on a parachute because the cockpit wasn't big enough.

Well, improvements in workmanship were dramatic! In his book, "Herman the
German," Neumann writes that each night, "Way past dinnertime, the
airfield looked as if it were invaded by glowworms; the twinkling came
from flashlights mechanics used to check--once more--the tightness of
pipes or connections they had made in case Neumann might suggest that they
'Volunteer' to ride in their planes the next day."--Now there's a guy who
knew how to motivate quality. TQM's an overdue sign of a national quality
revolution. It's a buzzword you see in commercials, hear at symposiums,
and notice in bookstores. But don't just dismiss TQM as yet another
acronym that will die off. As a term, TQM might well change over time.
However, as a philosophy TQM will last, as more companies and managers
come to understand what continuous quality improvement means and what it
can do. Affordable price tags, fair profits and high product quality will
prove TQM's merits long after the trendiness of the buzzword disappears.
It offers opportunities for every person involved in research,
development, test, production and operations.

TQM--is BETTER QUALITY AT LOWER COST. It's the prerequisite to good
performance. AFSC's senior people have been through training seminars
with W. Edwards Deming, one of the best-known quality leaders in the
world. Deming's philosophy is that 85 percent of quality problems are
caused by the system; just 15 percent are caused by people. Just to be
sure we're communicating--you're likely to be part of the 85 percent! If
the products of U.S. industry are not well liked, loved, by the customer,
you are involved because you're that 85 percent of the system that
designs-in-problems the manufacturing work force can't correct.

General Randolph was challenged about his intensity on this subject of
total quality management. The person said it sounds as if quality issues
are a matter of life and death. He said no, they're much more important
than that. Think about these statistics:

If the U.S. had service suppliers who did their jobs right 99.9 percent of
the time, there would still be:

- 20,000 wrong prescriptions filled each year;

- Unsafe drinking water almost one hour each month;

- 2 long or short airplane landings a day (That's an accident) at Los
Angeles and New York;
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- And 2000 lost articles of mail per hour every day.

- In the defense arena, given 1 million grenades, you would have 999
duds--and 1 will go off in "0" seconds.

Where is your quality meter set?

General Randolph closed his talk with this story President Kennedy would
tell and I'll do the same. It's about a retired French General whose
hobby was gardening. He was a very cultured man with a deep sense of
history. On his 80th birthday he bought a small shrub and instructed his
gardener to plant it in the garden.

"But, Sir," the gardener protested, "that plant won't flower for a hundred
years!" "Then by all means," the General said, "plant it now."

The total quality we plant in our work today is FREEDOM FOR TOMORROW. We
need to plant more flowers.
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Abstract

In order to control the behavior of aerospace structures in real time, closed loop control systems
require highly accurate measurements of the vibrational frequencies and amplitudes exhibited by
structures at any given instant. Traditionally, this has meant the use of a large number of
accelerometers mounted at various locations on the structure. The motion of the structure has then
been inferred from these point measurements. Developments in the field of fiber optic sensing
have now reached the point at which practical sensors may provide a near term ability to produce
an output proportional to the integrated structural deformation along an attached or embedded
optical fiber. In this paper, the principles of operation of two candidate techniques are discussed:
polarimetric and statistical mode sensing. Experimental results are presented and compared with
theoretical predictions. Finally, the advantages and limitations of integrating vs point vibration
measurements are covered, with an emphasis on structural control applications.

Introduction

The one dimensional, flexible nature of optical fibers makes them almost ideal for use as
distributed sensors. A parameter of the fiber that can be easily affected by a stimulus is the optical
path length and a change in optical path length can be measured with great resolution using
interferometric techniques. Figure 1 shows a two arm optical fiber interferometer that is sensitive
to optical path length differences of less than a wavelength of light (<1 micron). Unfortunately,
this is much too sensitive for stable operation without complex compensation schemes. The
sensors described in this paper reduce the unwanted sensitivity by having all the arms of the
interferometer in the same fiber.

A polarimetric sensor results when the two arms of the interferometer are the two orthogonal
polarization modes of a single mode fiber. Any stimulus that induces a birefringence in the fiber
will effectively cause a difference in optical path lengths. The polarimetric sensor considered here
uses stress caused by bending to produce the birefringence. With a coherent light source at one
end of the fiber and an analyzer at the other, a bend modulated signal is observed.

A statistical mode sensor (SMS) results when the interferometer has many arms, all coexisting as
propagation modes within a single multimode fiber. When the output from a multimode optical
fiber is projected upon a screen, a uniform circular pattern is observed. When the light is
incoherent, there is a smooth distribution of intensity within the pattern. When coherent light is
used, however, the pattern becomes very granular and consists of a very large number of
"speckles" of varying intensities as seen in Figure 2. This is the complex interference pattern of a
many armed interferometer. The distribution of these speckles changes slowly over time, but the
intensity of the total circular pattern remains basically constant. When the optical fiber carrying the
coherent light is perturbed, the distribution of the speckle intensities is seen to change with the
perturbation, with some speckles becoming brighter, some dimmer, and some not changing at all.
The total intensity of the pattern remains unchanged, however. A statistical analysis of the changes
in the speckle pattern output from the optical fiber can then be used to obtain information about the
perturbation of the fiber.
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Fig. 1. Fiber op tic interferometer.
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Fig. 2. Multimode optical fiber speckle emission.
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There exis:s a body of prior work involved with investigation and use of the output speckle pattern
from multimode optical fibers for a variety of purposes. Of particular interest is the work done by
Claus et al. [ 1-2] on the vibration sensing effects using low number of modes step index optical
fiber sensors. This work fills the gap between the two mode polarimetric sensor and the many
mode statistical mode sensor.

In this paper, the theory and use of distributed fiber optic vibration sensors is described. In one
implementation of a statistical mode sensor (SMS-A), simple spatial filtering is used to optically
process the speckle pattern to provide an output related to fiber perturbation. In a second, more
sophisticated implementation (SMS-B), the pattern is projected on a CCD array detector whose
output is used to process changes in the pattern distribution to allow for accurate correlation with
fiber perturbation. Theoretical analysis of the output modal pattern of a highly moded step index
optical fiber is utilized to create a mathematical model of the SMS implementations. The
mathematical model is then used to make predictions of SMS performance. Two implementations
of the sensor are then simulated via a computer program. The computer simulation and actual
device performance are compared with theoretical predictions. Experimental results are shown
indicating the operational characteristics of the SMS units in a simple field test environment.
Finally, a polarimetric sensor is described and its operation is compared to the statistical mode
sensors.

Applications for distributed fiber optic vibration sensors include, but are not limited to, intrusion
detection, structural vibration sensing, and acoustic sensing. A distributed sensor may be of
particular importance where the alternative is a large number of point sensors such as on large
space structures.

Theory: Polarimetric Sensor.

Polarimetric sensors have been well described in the literature and have been used to sense a
number of different stimuli such as magnetic fields and sound waves. A concise mathematical
treatment of this type of sensor is given by Beasley et al. [3] in relation to a hydrophone.

A block diagram of a polarimetric sensor is shown in Figure 3. It consists of a source of polarized
light, a length of fiber with a portion exposed to a source of stress, and an output polarizer which
acts as an analyzer. By choosing a coordinate system that is referenced to the applied stress, the
input polarized light can be expressed (using Jones calculus) as

Ein = [EX E. cos 0

where Eo is the magnitude of the field and 0 is the orientation of the polarization relative to the
applied stress.

The fiber itself can be modeled by the transformation matrix

R ei(oa/ 2) cos (0 -ei(q 2 ) sin co(

[e-i(q2) sin (0 e-i(at2) cos o '(

where q is the retardation of the coupled light, co is the percentage of light coupled between the
axes, and a is the phase difference between the two polarization modes given by

a = ao+2 5 LC (Oa-ay) (2a)

where a0o is the static component, L is the'ength of fiber exposed to stress, C is stress-optic
coefficient, X is the wavelength of light, and ax and ay are the orthogonal radial components of the
applied stress.
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Similarly, the output analyzing polarizer can be modeled by the transformation matrix

S cosV sin ] (3)S-e sin V e cos v ' 1

where xV is the angle of the transmission axis of the polarizer and F2 is its extinction ratio.

The output of the analyzing polarizer is given by

Eout = S" R " Ein• (4)

Assuming there is no mode coupling in the fiber, making o)=O, and that the output light is linearly
polarized, making e--O, the output power can be expressed as

lout=Eout " F-,out =  l1+cos 20 cos 2,4+sin 20 sin 2V cos a) (5)

Simplifying further by setting the input polarization angle and the analyzing polarizer angle to 7t/4
reduces the equation to

,out = 1- cos a) . (6)

From equation (4), it can be seen that stress on the fiber which alters the birefringence which
changes the factor a, will in effect modulate the light intensity. This modulation can be made fairly
linear if the stress perturbations are small and if the fiber is prestressed so that ac is centered about
rt/2.

Theory: Statistical Mode Sensor.

Assume that the light in a multimode fiber is coherent, and linearly polarized, with the direction of
propagation along the z-axis, and the electric field oriented along the x-axis. Assume each speckle
has an intensity that depends upon modal interference of the coherent light in the fiber. Assume
that each speckle is projected upon a pheLodetector element and converted to an electrical signal.
The changes in this signal may then be processed to obtain information about perturbations of the
optical fiber. If each individual speckle intensity is given by Ii, the total intensity is roughly
constant, i.e.

IT= Ii =constant , (7)
i=l1

where N is the number of speckles.

Next, assume that each of the N speckle intensities act like the output from individual
interferometers and vary with the fiber perturbation. Each individual speckle intensity would then
vary with time according to

Ii=Air[1+Bi {cos(8i)-F(t) i sin(Si)}] (6)

Although these interferometers are obviously related, subsequent analysis and modeling will
assume that for small enough sampling areas and large enough number of samples, that individual
speckles will be weakly or randomly related in phase, amplitude and modulation depth with respect
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to perturbation, i.e. { A i, Bi, Oi and 8i) are assumed to be collections of random numbers within
some limits. The degree of validity of this assumption will be determined through comparison of
model predictions with experimental results.

In order to allow comparison of theory and experiment, two different ways of processing the
individual Ii's are considered: (1) summing the changes of a small enough number of the signals
so that statistical averaging does not produce a constant sum as shown in Figure 4 and (2) taking
the sum of the absolute value of the changes in all of the signals as shown in Figure 5.

In the first case, the sum of n<<N components is taken. In addition, only the time varying
components are considered. In that case,

n

AIT = -Ai Bi Oi F(t) sin (8j) (7a)
i=l

may be reduced to,
n

AIT = Ci F(t) sin (8) (7b)
i=1

Since the F(t) term is independent of the sum, it can be pulled out with the result

AIT = Ci sin (8i)} F(t) . (8)

This expression represents the output that could be expected from a statistical mode sensor in
which the intermodal interference information is optically processed by simple spatial filtering. It
should be noted that Equation (8) is also an expression of conservation of the total power contained
in the speckle pattern, since as n becomes very large, the term in brackets goes to zero.

For the second case, in which the absolute values of the changes of all N pixels are summed, the
basic expression for the signal output is given by

AIT= CjdF(t) sin (801 , (9)

where the absolute values of the derivatives of Equation (7) have been summed. The final signal
output for this case can be written as

f Qsi 8014F9 . (10)

The term within the brackets sums over a large number of components so that in spite of local
variations in the distribution, the sum will remain at a constant value which will be defined as C.
Equation (10) can then be expressed as

d F(t) (11)

From Equations (8) and (11), response to a sinusoidal perturbation, sin (cot), would be

AIT= C sin (8i) sin ((o t) (12)
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for the first case, while the second case would reduce to

AIT=.Cicos(Ot)• (13)

The absolute value term in Equation (13) can be replaced by an infinite sum, or

AIT= Oc C +- (2k"ot) (14)

Based on Equations (11) and (14), SMS device performance when the two different processing
schemes are used can be predicted. For the first case, a signal should be present at the same
frequency as the perturbation and either in phase with the perturbation or 1C out of phase. The
amplitude of the signal could range from some maximum value down to zero. For the second
case, the signal has no component at the perturbation frequency, a large component at twice the
perturbation frequency, and smaller components at integral multiples of twice the perturbation
frequency. Although harmonic distortion exists, the signal should exhibit good amplitude and
phase stability due to the statistics involved in summing the absolute value of a very large number
of speckle intensity changes. In addition, due to the differentiation inherent in the second case, for
constant amplitude and varying frequency perturbation, the SMS signal should exhibit a linear fall
off of amplitude with decreasing frequency.

Computer Model of Statistical Mode Sensor

In order to determine the characteristics of a number (N) of interferometers with randomly related
coefficients { Ai, Bi , Oi and 8 ), a computer model was developed in the C language to simulate
the expected output from the two different processing schemes for the statistical mode sensors.
The program was written in the Lightspeed C implementation of the language and run on a
Macintosh Plus computer. The language random number generator was used to provide N sets of
values (A i, Bi, Oi and 8 ) to correspond to the N randomly related interferometers. The
allowed ranges for the interferometer parameters were: 0.5 > Ai _> 0, 1.0 > Bi > 0, 7/8 >! i > 0,
and 2 n _> 8i 2 0. The random number generator provided the same output every time, so that any
N>n set of interferometers always included the set of n interferometers generated for the smaller
number.

The computer modeling produced the results shown in Figure 6. In Figure 6(a), one cycle of
perturbation is applied and the normalized sums of 5, 50 and 500 pixels (interferometers) are
taken. The normalization factor is the average of the sum of the pixel intensities over the one cycle.
As can be seen, the fractional modulation of the pixel intensity sum decreases with increasing
number of pixels, so that for 500 pixels, the modulation is negligible. Figure 6(b) depicts the
result when the absolute value of each pixel change is summed over one cycle of modulation and
normalized to the sum of the pixel intensities over the cycle. In this case, the signal does not
change significantly as the number of pixels is increased with a modulation of -2%.

Device Design and Fabrication

In order to test and compare the polarimetric and statistical mode sensors, three prototypes were
constructed. A polarimetric sensor and two SMS signal processing designs were implemented, the
SMS-A using spatial filtering to perform optical processing of the signal, and the SMS-B, which
used much more sophisticated electronics in conjunction with a CCD detector.

The polarimetric sensor was assembled as shown in Figure 3 in the laboratory for comparison
purposes. It consists of a laser diode light source, an input polarizer to assure a source of linearly
polarized light, a length of single mode fiber of the type used for communications, an output
analyzer polarizer, and a photodetector. Since the single mode fiber used was not polarization
preserving, the orientations of the input and output polarizers were simply adjusted to give the best
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light modulation. The only signal processing required consisted of an AC coupled amplifier, a
great deal of gain was needed because of the low sensitivity of the sensor.

Of greater interest were the statistical mode sensors. The SMS-A and SMS-B were designed and
packaged for both lab and field use.

For the SMS-A unit, most of the speckle intensity processing is done optically, as can be seen
from Figure 4. A simple amplifier for the photodetector would give a working system. Ideally,
though, the output of the sensor would be much more stable and repeatable if the random effects of
Ai, Bi, 0j, and 6i could be reduced. This can be done by assuming these terms vary more slowly
than the perturbation signal so that they can be filtered out. Assuming a sinusoidal perturbation
F(t)= sin(wt), and summing Equation (6) over all speckles gives a total intensity

n n nIT=JA i+Y/ki Bicos(8i)- i Bi 0jisin(wt)sin{Si) . (15)

i=1 i=1 i=1

Simple high pass filtering will remove the first two terms leaving Equation (12). Because the
unwanted bracketed term in Equation (12) is a gain term rather than additive, an automatic gain
control (AGC) circuit is used. The control signal for the AGC circuit is derived from the inverse of
the terms that were filtered out by the high pass filter. This does not provide complete
compensation but Ai is completely removed and experience verifies that stability is improved.
Figure 7 is a photograph of the SMS-A unit.

In the SMS-B sensor, all of the signal processing occurs in electronics as shown in Figure 5. The
detector was a 128 x 128 array of photodiodes which capture an image of the speckle pattern called
a frame. Each photodiode contributes one picture element, or "pixel", to the frame. Each pixel is
digitized and stored in a digital memory called a frame buffer. Just before a new pixel is stored in
the frame buffer, the old pixel data is removed and both old and new pixel data are passed to an
arithmetic circuit. The arithmetic circuit finds the absolute value of the differences between the
old and new pixels. All of the absolute values of the differences for the entire frame are then
accumulated and normalized to give a single value. This single value represents the amount of
change in the speckle pattern that occurs over the period of time between captured frames. For
convenience, the digital value is converted back to an analog signal for display on an oscilloscope
or strip chart recorder. A prototype of the SMS-B sensor is shown in Figure 8. Bandwidths in
excess of 1 MHz can be attained by giving each pixel its own arithmetic circuit operating in
parallel. However, to keep circuit size within reason, the photodiode array must be made much
smaller. A more economical and slower method is to process the pixels serially through a single
arithmetic circuit or computer. The actual implementation shown in Figure 5 clocked the pixels out
of the array at 8 MHz through a pipelined "hardwired" circuit to attain a frame rate of
approximately 275 Hz. The prototype unit also has an output that bypasses the final summation
stage so that external signal processing may be used.

Results and Discussion

The polarimetric and the two SMS implementations were tested in a preliminary fashion in the
laboratory. The tests were carried out using a communication grade single mode fiber and a
100/140 jam step index multimode optical fiber attached to a bar clamped at both ends. The fibers
were attached to the bar in the same configuration as shown in Figures 4 and 5 with the single
mode fiber mounted parallel to the multimode fiber. A spring weakly coupled the center of the bar
to the drive piston of a Ling Dynamic Systems Linear Vibrator.

A vibrating bar was used to produce a distributed perturbation of the fiber. The choice of a bar
rather than a vibrating string helped greatly with the waveform, harmonic, and phase analysis.
This is because the overtones (higher modes of vibration) of a vibrating bar are not harmonic. If
the overtones of the bar are excited, they would not be synchronized with the fundamental allowing
them to be easily filtered out. In practice, the overtones were not present because there was no
source of excitation at their frequencies. Of all the different boundary conditions for a vibrating bar
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Fig. 7. SMS-A: Optical spatial filtering implementation.
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Fig. 8. Prototype SMS-B: CCD detector implementation.
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(free, hinged, or clamped), the clamped - clamped configuration was chosen to avoid exciting the
portion of the fiber leading up to the sensor section.

To monitor the vibrations of the bar without introducing distortions, a non-contacting fiber optic
displacement sensor was used. The sensor consisted of a bundle of optical fibers whose sensing
end was cleaved and polished in a uniform manner Half of the fibers in the bundle transmitted
light to the surface to be measured and the other hallceivedlhe reflected light. Because the ligg W.,
disperses as it leaves the transmitting fiber, how much light is gathered by the receiving fibers
depends on the distance to the reflecting surface.

The bar used was 74.7 cm between clamps, 0.7545 cm wide, 0.1265 cm thick, and made of steel.
The fiber and glue add a little weight to the bar increasing its effective density slightly. The
allowed frequencies for a bar clamped at both ends is [4]

=L Q:K 2 K=a(16)
21 p ' (

where 1 is the length, Q is Young's modulus, a is the thickness, p is the density, and P3n are
coefficients for the allowed frequencies. For the bar used

a= .321cm
1= 74.7cm
Q=- 19x10 1 1 dyne/cr.
d=7.7 g/cc
and fl= 1.5056, 132= 2.4997, 03= 3.5, 14= 4.5,

This gives the fundamental mode at 29.4Hz which agrees with experiment. The shape of the bar
as it vibrates is of the form (1-cos(x)).

The bar was first perturbed in such a way as to provide a sinusoidal output from the reference
displacement sensor. This output is shown in Figure 9 along with the output from the polarimetric
sensor. The three signals from the polarimetric sensor indicate the result of varying the input
conditions to the fiber on the vibrating bar by wrapping the input fiber around mandrels of (a) 3.2
cm, (b) 3.8 cm, and (c) 4.4 cm. As can be seen, the polarimetric sensor is fairly immune to input
conditions. As long as the bending of the input fiber does not cause enough stress to move a
significantly away from n/2, Equation 6 predicts that the amplitude and phase of the output should
track the excitation.

Similarly, the output from the reference displacement sensor is shown in Figure 10 along with the
output from the SMS-A. The three signals from the SMS-A indicate the result of varying the input
conditions to the fiber as in the previous test. By changing the input conditions, the amplitude and
sign ot the sum term in Equation (8) have been modified so that curve (a) is ic out of phase with the
bar displacement with large amplitude, curve (b) is n out of phase with the bar displacement with
lower amplitude, and curve (c) is in phase with the bar displacement and has large amplitude.
These results indicate that the mathematical model used to predict the behavior of SMS type
sensors has reasonable validity.

Following these tests, the SMS-B sensor was tested using the same optical source, sensing fiber,
and excitation configuration. These results are shown in Figure 11. In this case, the frequency of
the SMS-B sensor is twice the excitation frequency, precisely in accordance with prediction but out
of phase by 310. When the input conditions were varied in exactly the same manner as for the
SMS-A sensor, the resulting output did not change in either amplitude or phase. These results
provide additional demonstration of the validity of the simple mathematical model of device
operation developed in this paper.

As Figure 11 shows, although the SMS-B maintains a constant phase, this phabe is not t/2 as

predicted. The large phase lag is actually a fixed time delay caused by the pipelined architecture of
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Fig. 9. Effects of varying input conditions to polarimetric sensor.
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Fig. 10. Effects of varying input conditions to SMS-A.
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Fig. 11. Effects of varying input conditions to SMS-B.
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the arithmetic circuit. The camera of the SMS-B quantizes the speckle image into frames, a
complete frame taking 3.975 ms. There is a delay of approximately 3 frames from the photodiode
input to the analog output. This accounts for all of the measured phase delay within the SMS-B
electronics unit to within +20. The SMS-A electronics unit has no source of large phase shift and
measurement confirmed this to within +20.

The amplitude variation of the SMS-B signal at 60.8 Hz as a function of the change in amplitude of
the vibrating bar as measured by the reference sensor is shown in Figure 12. The dependence is
linear as expected. Finally, Figure 13 shows the ratio of the SMS-B signal output at 2o to the
reference sensor output at o) as a function of o. As can be seen, there is a falloff at frequencies
above 65 Hz due to the frame processing rate of the SMS-B and a falloff at low frequencies due to
the explicit ca dependence of the SMS-B signal as indicated by Equation (13).

A spectrum analysis of the outputs of the SMS devices was carried out under different conditions
of amplitude of bar vibration. It was found that the SMS-A was very sensitive to optical input lead
configuration, so that for one lead position, the fundamental frequency component virtually
disappeared, leaving nothing but higher frequency harmonics. For large amplitude vibrations (4
mm), the harmonic distortion varied from 7% to 540%. Reduction of the amplitude of the
vibrations by a factor of 4 (to 1 mm) resulted in a significant reduction of the harmonic distortion in
roughly the same proportion although the exact numbers are not quantifiable due to the sensitivity
of the SMS-A to the optical fiber lead configuration. When the SMS-B sensor was tested, it was
found that the harmonic distortion ranged from 15% to 43% at the larger amplitude excitation and
from 10% to 14% at the 25% excitation level.

Summary and Conclusions

Two methods of sensing vibration with integrating fiber optic sensors have been demonstrated.
Mathematical models have been developed which have shown good agreement with observed
sensor behavior. For the sensors examined, the sensing technique is compatible with off-the-shelf
components and fiber cable and even allows for simultaneous telecommunication and sensing
using the same optical fiber cable.

The results of the preliminary testing of the distributed sensors have been very encouraging. The
ability to sense vibration has been demonstrated in the laboratory. Table 1 outlines the relative
merits of the three sensors investigated.

Basically, the polarimetric sensor features simple construction and good amplitude, and frequency
information and, with calibration, good phase response. Its main drawbacks are its low sensitivity
to the type of bending stress used in our tests and the expense of coupling a laser to a single mode
fiber. This sensor also exhibits a limited dynamic range because of its inherently nonlinear
response as seen in Equation (6). The sensor must be adjusted to operate about a linear portion of
its response curve and the excitations must be kept small to avoid amplitude errors and harmonic
distortion.

The SMS-A type sensor offers the advantage that it is relatively simple and cost effective to
implement. Spectrum analysis of its output can be used to determine the vibrational frequencies of
whatever the sensing fiber is attached to or embedded in. This type of sensor is limited in that it
can only be used to provide accurate information about vibrational frequencies, information about
phase with an ambiguity of 7t, and no consistent information about amplitudes. Amplitude and
phase of the output signal are very sensitive to the spatial configuration of the input and output
optical leads to the sensing region, even if they are stationary, so frequent calibration is necessary
is these parameters are needed. Like the polarimetric sensor, the SMS-A type sensor has a limited
dynamic range because of its nonlinear response, however because of its statistical nature, the
errors are not as bad (but neither are they adjustable).

The SMS-B type sensor improves upon the performance of the SMS-A sensor in two ways. First,
like the polarimetric sensor, it is possible to obtain very accurate information about vibrational
amplitudes, but with much greater sensitivity. However, the sensitivity is proportional to the
signal's frequency which limits the band width and must be compensated for in subsequent
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Fig. 12. SMS-B output vs. reference sensor output at constant frequency.
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processing. Second, also like the polarimetric sensor, this type of sensor is not sensitive to the
spatial configuration of the input and output optical leads to the sensing region as long as they are
relatively stationary. Unlike the polarimetric and SMS-A type sensors, the dynamic range of the
SMS-B type sensor is relatively large because its response is linear as Equation (11) shows. The
principal limitation of the SMS-B sensor lies in the fact that it also provides phase information with
an ambiguity of 7t because its output is frequency doubled. The phase ambiguity inherent in the
SMS sensors precludes them from being straightforwardly used to provide error signals in closed
loop structural control systems. Their use in such systems is still possible using sophisticated
control algorithms based upon some a priori knowledge of the structural dynamics.

Both implementations of the SMS technique should have application for present sensing needs.
Integrating sensors for the determination of vibrational structural modes could be used for active
structural control in one application while another might include detection of structural damage or
fatigue through detection of changes in basic structural vibration patterns. In applications where
redundancy is needed for many point sensors, a distributed fiber optic sensor may be very cost
effective if used to verify the operation of the primary sensors.
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ABSTRACT

This work investigates the development of NiTiNOL Shape Memory Alloys (SMA) sensors and
actuators as components of an active vibration control system. Analytical and experimental models were
developed and tested. The test set-up consisted of an aluminum cantilever beam with distributed
NiTiNOL wires fastened along both sides. A constant amplitude control algorithm was used to provide
a rate feedback force to actively suppress transient vibrations. The settling time of the beam was reduced
by a factor of 15 through the use of the NiTiNOL wire sensors and actuators. Analytical simulations were
developed which correlated well with the experimental results. This investigation demonstrated the
feasibility of using NiTiNOL sensors and actuators for vibration suppression of structural members.
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INTRODUCTION

Future large spacecraft missions will require improved structural performance to meet serious vibration
and control issues. Active vibration suppression, and pointing and shape control techniques will have
to be developed to accurately control and monitor these large flexible space structures in the space
environment. The overall spacecraft design will rely on distributed structural control methods to
minimize local vibration and jitter, and maintain the high accuracy pointing and shape requirements.
Structural members which contain their own local sensors, actuators, and computational/control
capabilities need to be investigated.

Current state-of-the-art sensors and actuators are being researched industry wide. New design concepts
are using electro-rheological fluids[ 1], piezoelectric ceramics[2], and shape memory alloys as methods
of actuation. Some of these same designs involving piezoelectric ceramics and shape memory alloys
along with other concepts that use fiberoptics[3] and acoustic waveguides[4] are being developed for
sensing.

The focus of this paper is to investigate the feasibility of using shape memory alloy materials for both
local sensing and actuation to minimize vibrations of a simple structure. The preliminary results of this
investigation verify that shape memory materials can be used for vibration suppression.

SHAPE MEMORY PROCESS

Shape Memory Alloy materials are generally provided in a basic shape (i.e. wire, rod, tube, sheet, etc.),
from which the desired memory shape is constructed. The memory shape is physically constrained and
annealed (heat treated) under a controlled environment to provide a permanent set. Once the material
is annealed it is ready for operation. The SMA can be strained up to 8% of its original shape. This
condition is usually known as the Martensite or soft condition. To return the SMA back to its memory
set, heat is applied. After enough heat is added to reach the transition temperature the SMA will revert
back to the memory shape with high energy release. This condition is usually referred to as the Austenite
or hard condition. Once this transition has occurred heat is removed and the SMA can again be strained.
This cycle is repeatable between soft and hard conditions.

EXPERIMENTAL TEST STRUCTURE

A thin flexible cantilever beam was selected as the representative test structure with NiTiNOL wires
mounted externally along the beam for both sensing and actuation (see figure 1). The test set-up was
designed for low frequency (approximately 1 Hz) testing such that the actuation of the NiTiNOL wire
could comfortly be cycled without bandwidth limitations. Table 1 lists the beam properties of the test
structure used. Standard 55-NiTiNOL was used for actuation. Two actuator wires are used to control
the 1 st bending mode of the beam. A 1 0-mil wire was determined to provide sufficient actuation force
as reported from the literature in figure 2. For two-way memory operation the stroke is usually limited
to about 3-4% of the total wire length.
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~'Accelerometer 4.5 lb weight

Figure 1. Cantilever Beam With NiTiNOL Wires

Matenal Aluminum
Modulus 11.0 Msi
Length 48.00 inches
Thcikness 0. 125 inches
Width 6.00 inches
Tip Mass 4.5 lbs
Density 0.10 lb/in 2

Damping factor 0.002

Table 1. Beam Properties

640
156-

0 Yield load (Martensite) 500
* Recovery load (Austenite) 300

13- Assume: C
Nitinol yield strength - 20 ksi

108- 0.032 in x 2.00 in strip

0.032 in dia wire
~84

0

0.02 in dia wire
36

0.0 18 in dia wire

12

Crossectiona ariej2

Figure 2. NM~NOL Load vs. Cross-Sectional Area (Recovery and Yield)fromn the Literature
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ANALOG CONTROL SYSTEM

The analog controlled NiTiNOL active damping circuit is shown in figure 3. A 10-mil diameter wire
NiTiNOL sensor was activated with current from a 15v supply through an 100 ohm resistor. This
provided about 100 ma ofsensorcurrent. As the beam deflected, the resistance of the NiTiNOL increased
or decreased, causing a change of voltage across the sensor. The voltage across the sensor was detected
with an high gain differential amplifier, the sensor was connected through capacitors so the DC voltage
across the sensor would be ignored and any very slow changes due to temperature drift were also ignored.
High frequency noise and spurious beam oscillations were also filtered out. Only dynamic voltage
changes that correspond to the cantilever beam fundamental frequency were sensed.

NITINOL AC COUPLED SIGNAL
ACTIVATOR PORPOATIONAL TO BEAM

DEFLECTION

AMPAMAMP REJECT 
P 

9IIASE CLIP

GAIN SHHRT

2000

SENSOR POWER TO ACT 2

Figure 3. Analog-Controlled NiTiNOL Active Damping Circuit

The voltage out of the sensor was proportional to the length of the sensor wire or beam position. The
maximum output was detected at minimum beam tip velocity. By differentiating the position signal a
new signal was derived that was proportional to the velocity. In order to damp the beam oscillations, a
force was applied to the beam to add a velocity vector opposite the existing beam velocity. This was
intended to reduce the maximum beam velocity. Since a signal proportional to velocity was derived, it
was most convenient to apply this force during the time of maximum velocity.

The velocity signal was sent to a rectifier. In parallel it was inverted and sent to a second rectifier. This
circuitry provided two out-of-phase sine shaped pulse signals (see figure 4). These pulses were amplified
using bench-type power amplifiers and applied to the NiTiNOL actuators. Note that power was applied
alternatively to each actuator. While one was heating, the other was cooling (ambient room temperature).
The clip adjustment was used to adjust the width of the heating pulses and the dead band.
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Figure 4. NiTiNOL Analog Control Signals

EXPERIMENTAL RESULTS

The effectiveness of the analog-controlled active vibration suppression circuit was evaluated by
comparing the transient responses of the beam both with and without active vibration control. The tip
of the beam was displaced a known distance (6 inches) and released. This test was performed first without
any actuator or sensor wires attached. The beam took 7 minutes to naturally dampen out the oscillations.
After the NiTiNOL wires were attached the beam was tested again and due to the high specific damping
capacity of NiTiNOL [5] the beam passively damped out the oscillations in 4 minutes and 10 seconds.
Figure 5 shows the oscilloscope readout of the transient response. Finally the test was repeated with the
analog-controlled damping circuit activated the beam actively damped out the oscillations in 28 seconds.
Figure 6 shows the oscilloscope readout of the transient response.

RMOUT ~~~I IS IMM4R. 11F
Figure 5. NiTiNOL Passive Damping System, Figure 6. NiTiNOL Activee Damping System,

4 min, 10 sec 28 sec
SENSOR COMPARISONS

A standard strain gage type accelerometer was mounted at the tip of the beam. The NiTiNOL signal was
differentiated twice to obtain a complimentary signal for comparison. Figure 7 shows an oscilloscope
readout of transient beam vibrations using both the NiTiNOL wire sensor and the strain-gage type
accelerometer. This comparison demonstrates the high level of resolution available from a NiTiNOL
sensor. Because the NiTiNOL wire was strung the total length of the beam, sensor readouts could be
taken at any point. To obtain this same capability using accelerometers, several would have to be placed
at the desired discrete locations.
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first harmonic
(acceleration)

Strain gage
accelerometer

Figure 7. NiTSNOL Cantilever Beam Sensor Comparisons

SIMULATION MODEL AND RESULTS

A simple simulation model was developed to help predict the damping effectiveness that could be
achieved. A 20 node NASTRAN model was used to find the eigenvalues and eigenvectors. The
first two bending modes of interest were;

fl= 0.73 Hz, 0), = 4.58659 rad/sec
f2= 8.20 Hz, (o2 = 51.5206 rad/sec

The standard second order differential equation used to represent transverse vibration is given by [6]:

mx+kx=F (1)

introduce the coordinate transformation

x = ¢q (2)

where q are modal coordinates and 0 the eigenvectors.

by substituting equation (2) into (1) and introducing modal damping yields:

[M] r4) + [C] (4) + [K (q) = 0F

where
M is the identity modal mass matrix
C is 2 co diagonal damping matrix i=1,2
K is coi 2 diagonal stiffness matrix i=1,2
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Based on the experimental response the NiTiNOL actuator was modelled using dry friction;

F=f ;/h~j

where

f = constant magnitude force = 7.5 lbs/NiTiNOL wire.

Figure 8 shows the predicted tip position response which agrees with the experimental data discussed
previously. Figure 9 shows the predicted tip position response for 4 NiTiNOL actuator wires, with a
settling time of 16 seconds. Although the 1st modc was well behaved the second mode showed no
influence from the 1st mode control (figure 10). For multiple mode control, actuator distribution
becomes significant.

6 6

4 4

2 .~2

0 0-

.0

.10
c -2 .0-2
P P

-4 -4

-6 -5-60 10 20 30 0 10 20 30
Time Time

Figure 8. Two Actuator Tip Position Response Figure 9. Four Actuator Tip Position Response

10 .25
8 .20
6 .15
4 .10
2 .05
0 0

-2 -.05
-4 l w-.10
-6 -.15
-8 -.20

-10 -.25-
0 10 20 30 0 10 20 30

Time Time

Figure 10. Flex-Response First Two Modes Two Actuator Model
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OVERALL DAMPING EFFECTIVENESS

Table 2 summarizes the overall damping effectiveness. Although the transient response has approxi-
mately linear decay rate, a viscous damping or exponential decay rate was used to approximate the
damping factor for comparison. As shown the active damping was found to be 15 times more effective
than no control at all and the simulation model determined that by doubling the actuator authority the
effectiveness could be approximately doubled.

Ts  Effectivness

Uncontrolled 0.002 420 sec 1

Passive 0.003 250 sec 1.5

Active
2 NiTiNOL wires 0.031 28 sec 15

4 NiTiNOL wires** 0.054 16 sec 27
approximated viscous damping

** model prediction

Table 2. Overall Damping Effectiveness

SMA CHARACTERIZATION

Further understanding of how SMA material provides actuation is determined by analyzing the basic
parameters that characterize SMA operation. Temperature, displacement and force are all interrelated
and are influenced by the power input and the environment. Characterization curves can be used to derive
relationships between inputs and outputs. Relationships between parameters can help develop detailed
actuator models. These models can better aide the engineer in predicting the performance and defining
the limitations of shape memory alloys. The curves shown in figures 11 ana 12 show the steady state
power versus temperature and temperature versus displacement curves, respectively. These two curves
can be used to derive the steady-state relationship between applied power and displacement. Notice that
the path is different in each direction, which is typical of thermal work cycles. These relationships help
define nonlinearities; hysteresis and creep. A preliminary investigation of these types of phenomena are
just starting to be understood. [7]

18I 5 I I I I I I

I1 1

60 -.- 0 - -- - -I- - - -

,, go. --I---------------------,--,-,

140 - ----- -- --------
L - I I - ----- - -I-- - T- -_----_-----_

20 - - - - -- - - LJ - -- - - - - -1 0 -

6 J-----------"40 - J_ L J -0 - -

-1 0 1 2 3 4 5 6 7 0 20 40 60 80 100 120 140 160 180
Power Temperature OF

Figure Ii. Power vs. Temperature Figure 12. Temperature vs. Displacement
(Constant Force Test) (Constant Force Test)
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SUMMARY

This investigation has verified the feasibility of using shape memory alloy materials as both a sensor and
an actuator to actively suppress vibrations of a flexible structure. The overall effectiveness of the active
vibration control system was experimentaly demonstrated to reduce the spurious vibrations of the
flexible structure by a factor of 15. SMA's are an attractive material for use in actuation systems because
of their large force capability for a given amount of material, however, they will probably be limited to
fairly low frequency applications. Two-way actuation using SMA wires is bandwidth limited by the
cooling time of the opposing wire. The SMA sensor showed high resolution along with easy signal
manipulation and readily available discrete sensor locations. Finally, SMA characterization will help
quantify nonlinearities, hysteresis, and creep to better understand the sensor/actuator functions.
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Abstract

This paper investigates the possibility of dissipating mechanical energy with piezoelectric
material shunted with passive electrical circuits. The effective mechanical impedance for
the piezoelectric element shunted by an arbitrary circuit is derived. The shunted
piezoelectric is shown to posses frequency dependant stiffness and loss factor which are
dependant on the shunting circuit. The generally shunted model is specialized to two cases:
the case of a resistor alone and that of a resistor and inductor. For resistive shunting, the
material properties have frequency dependance similar to viscoelastic materials but with
much higher stiffness and temperature stability. Shunting with a resistor and inductor
introduces an electrical resonance, which can be optimally tuned to structural resonances in
a manner analogous to a mechanical vibration absorber. Techniques for analyzing systems
which incorporate these shunting cases are presented and applied to a cantilevered beam
experiment. The experimental results for both the resistive and resonant shunting circuits
validate the shunted piezoelectric damping models.

Nomenclature

A = diagonal matrix of cross sectional areas of piezoelectric bar
C = generic capacitance
Cpi --= inherent capacitance of the piezoelectric shunted in the ith direction
dij = piezoelectric material constant relating voltage in ith direction to strain in jth

direction
D = vector of electrical displacements (charge/area)
E = elastic modulus of material
E = vector of electric fields (volts/meter)
g = real nondimensional frequency ratio = /o n
I = vector of external applied currents
K = modal stiffness
kii = material electromechanical coupling coefficient
Kij = generalized electromechanical coupling coefficient
L = diagonal matrix of lengths of piezoelectric bar
L = generic inductor
M = modal mass
r = dissipation tuning parameter (RCspcOP)

* Graduate Research Assistant, Department of Aeronautics and Astronautics

+ Assistant Professor, Department of Aeronautics and Astronautics
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R = generic resistance
s = Laplace parameter
s E  = piezoelectric material compliance matrix at constant field
S = vector of material strains
T = vector of material stresses
U i  = potential energy of element i
v = velocity
V = voltage
x ST = static displacement of a system = F/Kt
yD = open circuit electrical admittance of the piezoelectric (inherent capacitance)
Yo' = electrical admittance of the piezoelectric ( sum of shunting admittance in

parallel to the inherent capacitance)
ySU = shunting admittance of the piezoelectric (in parallel to inherent capacitance)
Z = generic impedance, mechanical or electrical
ZME  = effective mechanical impedance of the shunted piezoelectric
ZIL  = electrical impedance of the piezoelectric (shunting impedance in parallel to

the inherent capacitance)
= mass ratio (proof mass/system mass)

y = complex nondimensional frequency = s/o),
= resonant shunted piezoelectric frequency tuning parameter, oon
= loss factor

p = nondimensional resistance (or frequency) = RCSpCo

oe = resonant shunted piezoelectric electrical resonant frequency
(on  = natural frequency of a 1-DOF system

Subscript
p = piezoelectric
PP = optimal by pole placement criteria
t = transpose of a vector or matrix
TF = optimal by transfer function criteria

Superscript
E = value taken at constant field (short circuit)
D = value taken at constant electrical displacement (open circuit)
RES = pertaining to resister shunting
RSP = pertaining to resonant circuit shunting
S = value taken at c.'nstant strain (clamped)
SU = shunted value
T =- value taken at constant stress (free)

There are many applications where the addition of passive vibration damping to a
structural system can greatly increase the systems performance or stability. The addition of
passive damping can decrease peak vibration amplitudes in structural systems and add
robustness to marginally stable active control systems, Ref [1]. Structural damping can be
increased by several methods the most common being the addition of high loss factor
viscoelastic materials to the structure or the attachment of a mechanical vibration absorber.
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Figure 1: Assumed Geometry for a Typical Piezoelectric Material with the Top and
Bottom Surfaces Electroded

In recent years piezoelectric elements have been used as embedded sensors and
actuators in smart structures by Crawley and deLuis [2] and Hagood [3] and as elements of
active vibration suppression system for cantilevered beams by Hanagud [4] and Hubbard
[5]. They have also been used as actuation components in wave control experiments by
Pines and von Flotow [6]. Within active control systems, the piezoelectrics require
complex amplifiers and associated sensing electronics. These can be eliminated in passive
shunting applications where the only external element is a simple passive electrical circuit.
The shunted piezoelectric itself can also be used as a structural actuator in a control system.

This paper presents a new type of passive damping mechanism for structural
systems which uses piezoelectric materials bonded to the structure. Piezoelectric materials
possess certain properties which make them useful as dampers or control elements for
structures. The first is that they strain when an electrical field is applied across them. This
property makes them well suited as actuators for control systems (where the control signal
is typically an applied voltage. The second is that they produce a voltage under strain.
This property makes them well suited for sensing strain. In general, piezoelectrics have the
ability to efficiently transform mechanical energy to electrical energy and vice-versa. It is
this transformation ability which makes them useful as structural dampers.

The advantages to this type of passive piezoelectric application were first presented
by Forward [7] & [8] and Edwards and Miyakawa [9] for damping applications on
resonant structures. This paper establishes the derivation and analytical foundation for
analysis of general systems with shunted piezoelectrics. A typical piezoelectric element is
shown in Fig. (1). The fundamental constitutive relations are the relation between strain
and applied field, known as the d constants, and between the charge density and the applied
strain known as the g constants. Another fundamental property is the electromechanical
coupling coefficient, k: which governs the energy transformation properties of a
piezoelectric. The constants are explained in detail in Ref. [10].

In passive energy dissipation applications, the electrodes of the piezoelectric are
shunted with some electrical impedance; hence the term shunted piezoelectrics is used. The
electrical impedance is designed to dissipate the electrical energy which has been convertd
from mechanical energy by the piezoelectric. In the following sections, the shunted
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piezoelectric's interaction with external circuits will be modeled, and the benefits that can be
derived by passive circuit shunting of piezoelectrics will be quantified. First, the equivalent
effective impedance of the shunted piezoelectric will be derived. This expression will then
be applied to the cases of resistive and resonant circuit shunting. Expressions for the
system damping will be derived, and parameters will be found which maximize this
damping. An experiment verifies the accuracy of the analysis.

Modelling of Generally Shunted Piezoelectric Materials

A general expression for the material constants of a linear piezoelectric can be written from
Ref. [11] as:

S =d t s8 T()

where D is a vector of electrical displacements (charge/area), E is the vector of electrical
field applied to the material (volts/meter), S is the vector of material strains, and T is the
vector of material stresses (force/area).

S11. SI-  T11 "1-

S22  S2  T22 T2

D= D2 } E E S S3 S T= T 3

D 2 4 T23

L93 JLE3 JS13 S. T3 T5

S12 S6  _ 6  (2)

The 3 direction is associated with the direction of poling and the material is approximately
isotropic in the other two directions. These direction conventions are shown in Fig. (1).
The matrix which relates the two electrical variables, electrical displacement and electrical
field, contains the dielectric constants for the material. This matrix can be written:

TE 0 0
Tr = 0 Tl 01

0 0 3 (3)

T
where the superscript, 0T, signifies that the values are measured at constant stress. The
two elastic variables, stress and strain, are related through the compliance matrix of the
piezoceramic, which has the form:

s8 s8  8  0 0 0
11 12 13

s E s ESE 0 0 0
12 11 13

S E S E SE 0 0 0
E 13 13 33

8 =0 00 0 0 s5 0

0 0 0 0 SE 0
66

0 0 0 0 s0
S4 (4)
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where the superscript, ()E, signifies that the values are measured at constant electrical field
(eg. short circuit). Note that due to symmetry the material properties are identical in the 1
and 2 directions.

Finally, there are those terms which couple the mechanical and electrical equations
by virtue of the piezoelectric effect. In the form of the equations given in (1) the coupling
terms are the piezoelectric constants which relate strain to applied field. For piezoelectric
ceramics, the matrix of piezoelectric constants has the form:

0 0 0 115 01

d=[ 0 0 d 1 0 0

d31 d 31 d33 0 0 0 (5)
The first term in the subscript refers to the electrical axis while the second refers to the
mechanical. Thus d3l refers to the strain developed in the 1 direction in response to a field
in the 3 direction (parallel to the material poling).

In order to allow the use of traditional concepts of electrical admittance and
impedance for the shunting analysis it is necessary to perform a change of variables. If we
use the definitions for voltage and current in Ref. [10]:

L

V.= fE dx
0 (6a)

I, fD1 •da,

(6b)

and furthermore assume that the field within and electrical displacement on the surface are
uniform for the piezoelectric material, then linear relationships can be defined in the Laplace
domain:

V (s )= L. E (s),
I(s)= sAD (s) (7a&b)

where L is a diagonal matrix of the lengths of the piezoelectric bar in the it direction, A is
the diagonal matrix of the areas of surfaces perpendicular to the ih direction, and s is the
Laplace parameter.

Taking the Laplace transform of eq. (1) and using eqs. (7a&b) to eliminate E and
D, the general equation for a piezoelectric in terms of the external current input and applied
voltage is obtained.

[SI ]= sAET Li sAd TV
[ dL1 8 E T (8)

This equation can be further simplified by noting that the upper left partition of the
generalized compliance matrix is diagonal. The elements of this partition have the form:

_ c
P 9 ( 9 )
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where C - is the capacitance between the surfaces perpendicular to the i 1h direction. Noting
that sCP is the open circuit admittance of the piezoelectric material, eq. (8) can thus be
written:

S .T -  sAd T ]=JLD -  sAdTv

IS I dt E d, -' 2 T(10)

where yD(s) is the open circuit admittance of the piezoelectric (the inherent capacitance with
free mechanical boundary conditions). The open circuit admittance relates the voltage
applied across the piezoelectric's electrodes in Fig. (2) to the external current input into the
piezoelectric. The large leakage resistance of the piezoelectric material is treated as infinite
in this analysis but can easily be included as a modifying term.

For shunted piezoelectric applications, a passive electrical circuit is connected
between the surface electrodes as shown in one dimension in Fig. (2). Since the circuit is
placed across the electrodes, it appears in parallel to the inherent piezoelectric capacitance in
that direction. Since admittances in parallel add, the governing constitutive equations for a
shunted piezoelectric material become:

I ]sAd

= d E } J (11)

with:
EL D S

Y =Y + YSU (12)

The externally applied current, I, is the sum of the currents flowing through the shunting
impedance, the inherent piezoelectric capacitance, and the piezoelectric transformer. The
shunting admittance matrix is assumed diagonal and frequency dependant with the form:

su
Y 1  0 0

Y su sU

0 0 ySU
[ 32 (13)

The top partition of eq. (11) can be solved for the voltage appearing across the electrodes.

V = ZELI - ZELs AdT (14)

Where ZEL is the electrical impedance matrix and is equal to (yEL)-I. The electrical
impedance matrix is also diagonal. Equation (14) can be substituted into (11) to find an
expression for the strain in terms of stress and input current.

S =[SE - dLIZE sAd]T +[d Lz(15)

This is a governing equation for a shunted piezoelectric. It gives the strain for a
given applied stress and forcing current. Notice that shunting the piezoelectric does not
preclude use of the shunted element as an actuator in an active control system but rather
modifies the passive characteristics of the actuator. By modifying the passive stiffness of
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Figure 2: Simple Physical Model of a Shunted Piezoelectric and its Network Analog
Showing its Ability to Transform Energy from Mechanical to Electrical
and Vice Versa.

the piezoelectric to include material damping, perfectly colocated damping can be
introduced into the system. This passive damping can be useful in stabilizing controlled
structures in the manner of Ref. [ 12] in which a mechanical actuator is passively damped.

Of particular importance is the new mechanical compliance term. The shunted
piezoelectric compliance can be defined from (15):

sE [8s - dL-ZELs Ad] (16)

If we note that with constant stress:
ZE (s) = 0 = short circuit electrical impedance (17a)

Z (s ) A= ( s = openfcircuit electrical impedance (17b)

and that:

sL eA = Cs (18)

equation (16) can be put in the form
sSU =[sE - d,2 L (T r ) - d] (19)
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where the matrix of nondimensional electrical impedances is defined:

EL EL D -1
= Z(Z ) (20)

Finally, since ZEL is diagonal, the electrical contribution to the compliance can simply be
written as a summation over the electrical impedances:

$SU =[SE [1Z EL( 1 d. [SE 7 L

= -i1[ i 
('C IT ) E- i l i 2' (21)

where di denotes the i"' row of d and for piezoelectric ceramics the Mi have the form:

0 0 0 0 0 0 000 0 00
0 0 0 0 0 0 0 000 00

S0 0 0 0 00 0 1 0 0 0 0 0
0 0 0 0 0 0 M 2 = 0 0 0 00

1 2 15 0

00 00 1 5 0 0 0 00 0 0
0 0 0 0 0 0 0 0 0 0 (22a&b)

d 21 d 2

31  d31  d314 33 0 0 0
2 2

d33 d 3 3 d3 1d3 3 0 0 0

M 3 T dd d33  d 2  00
3133 3 33

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 (22c)

These equations constitute a general expression for the compliance matrix of a
piezoelectric element with arbitrary electrode placement or elastic boundary conditions.
Several things are apparent from eq. (21). First, electroding and shunting the piezoelectric
element in the directions perpendicular to the poling direction (3) of the piezoelectric can
only effect the shear terms of the compliance. Secondly, shunting the piezoelectric in the 3
direction modifies all of the non-shear terms of the compliance matrix. Finally, the
electrical shunting circuit's ability to modify the piezoelectric material properties depends on
both the material piezoelectric constants and the nondimensional electrical impedance.

Specialization to Uniaxial Loading Cases

Equation (21) simplifies greatly when the piezoelectric element is loaded uniaxially
with either a normal or shear stress and only one pair of electrodes are present providing an
external electric field with components in only one direction. These common modes of
operation can be described:

Longitudinal Case: Force and field in the 3 direction

Transverse Case: Force in 1 or 2 direction; Field in 3 direction

Shear Case: Force in 4 or 5 direction (shear); Field in 2 or 1 direction respectively
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With uniaxial loading in the jh direction, only a single term from the compliance matrix
contributes to the material strain energy. By examining that term the energy dissipation
properties of the shunted piezoelectric can be examined. For loading in the jh direction and
the field in the i" direction the term in the compliance matrix is:

SU = .EL- =EL - d,

(23)
where the subscripts denote the row and column of the respective matrix.

At this point it is convenient to introduce the piezoelectric property known as the
electromechanical coupling coefficient. It is defined as the ratio of the peak energy stored
in the capacitor to the peak energy stored in the material strain (under uniaxial loading and
sinusoidal motion) with the piezoelectric electrodes open. Physically, its square represents
the percentage of mechanical strain energy which is converted into electrical energy and
vice-versa. For the 3 cases of piezoelectric operation considered, the electromechanical
coupling coefficients are defined in Ref. [10]:

Shear: k1  d 15 k
15 VST 24

d31Transverse: k - k "

Longitudinal: k = d33

33 3 (24)

or in the notation used before for force in the j' direction and field in the i' direction:

8.. e. (25)

Substituting eq. (25) into (23) we obtain:

I = s[ (26)

From eq. (26) we can see that the compliance of the shunted piezoelectric is related
to the short circuit compliance of the piezoelectric material modified by a nondimensional
term which depends on the electrical shunting circuit and the material's electromechanical
coupling coefficient. From eq. (26) the relation between the short circuit and open circuit
compliance of the piezoelectric can be derived by noting that in the open circuit case

_EL

Z =1 (27)

and thus eq. (26) reduces to:

D 2

.1 E J -Lk (28)
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which is in agreement with the relation given in Ref. [10] for the cases considered.
Equation (28) gives the change in mechanical properties of the piezoceramic as the

electrical boundary conditions are changed (from short circuit to open circuit). An
analogous relation can be derived for the change in the piezoelectric inherent capacitance as
the mechanical boundary conditions are changed. For uniaxial field and loading (only the
boundary conditions in the loading direction are varied) this relation is also dependant on
the electromechanical coupling coefficient.

j.dj [-k..2] (29)

This equation will be used for nondimensionalizations in the coming sections.
Equation (28) can be used with (26) to derive a nondimensional expression for the

mechanical impedance of the shunted piezoelectric. For uniaxial loading in the jh direction,
the mechanical impedance of the piezoelectric can be expressed as a function of the Laplace
parameter, s, as:

ME

Z" (s)= A
Xs Li s (30)

Now using eq. (30) and (26) to define the impedance of the shunted piezoelectric and eq.
(28) to nondimensionalize, the final expression for the nondimensionalized mechanical
impedance of the shunted piezoelectric can be derived:

SU 2
ME Z.. 1-kB_( ) _' -

J1 D2 EL,Z.. (s)= 1- 2 ELs

j v 4 S(31)

where the functional dependance of the mechanical and electrical impedances is written
explicitly; and the nondimensional mechanical impedance is defined as the ratio of the
shunted mechanical impedance to the open circuit impedance.

Coupling Shunted Piezoelectrics to Structures
ME

The nondimensional mechanical impedance, , can be complex and frequency
dependant since it depends on the complex, frequency dependant electrical impedance. If
we note that the impedance is primarily a stiffness, then we can represent the impedance as
a complex modulus, as is typically done in material damping. This is especially useful if
the shunting impedance is not resonant.

MEj. (32)
where R is the ratio of shunted stiffness to open circuit stiffness of the piezoelectric and Tj
is the material loss factor. This reduction leads to frequency-dependent equations for the
complex modulus of the shunted piezoelectric. Comparing eq. (32) to eq. (31) gives the
frequency dependant equivalent material properties for an arbitrarily shunted piezoelectric.

1()=Im{ZNE(s )}
77(0) MEw

Loss Factor: Re{ Z (s)} (33a)
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Modulus: E (W) =Re { M(s) } (33b)

These equations, as well as (31), can be applied to arbitrary shunting conditions for
parameter optimization of the material loss factor at a critical frequency.

To find the total system loss factor, the expression for the effective impedance of
the shunted piezoelectric, eq. (31) can be used along with the impedances of the other
damping devices in the frequency domain system analysis described in Ref. [13]. In
general, just as for viscoelastic materials, the relation between the high loss factor of a
structural component and the loss factor of the total structure can be represented as an
average of the system component loss factors weighted by the fraction of strain energy in
the respective elements, Ref. [14]

n

TOT i -- 1 __
11?

i =1 (34)

where Ui is the peak strain energy in the i h element of the structure. Techniques for
improving structural damping typically employ the damping material (shunted piezoelectrics
or viscoelastics) in areas of high strain energy to take advantage of this weighting. The
stiffness and loss factor of damping materials are typically frequency dependant. The high
stiffness (63 GPa) of the shunted piezoelectric gives them advantages over viscoelastic
materials (circa 1 MPa) since for a given strain they can store many times the strain energy
of the viscoelastic and thus contribute to higher system loss factors. The piezoelectric
material properties are also relatively temperature independent below their Curie
temperature (temperature at which they lose their piezoelectric properties) Ref. [11]. For
commonly available piezoelectrics tnis is typically in the range of several hundred C.

An1lieation: Resistive Shunting

A resistor can shunt the piezoelectric electrodes as shown in Fig. (3). In this
shunting geometry, the resistor is placed in parallel with the inherent capacitance of the
piezoelectric. The resistor provides a means of energy dissipation on the electrical side and
thus should increase the total piezoelectric loss factor above the loss factor for the short or
open circuited piezoelectric. Its exact effect on the stiffness and dissipation properties of
the piezoelectric can be modelled by applying eq. (31). For the case of a resistor across the
piezoelectric electrodes, the total nondimensional electrical impedance in the i h direction is:

Z1.U (s)Ri (35a)

EL l T
EL Z (s) R.CTs

Z. (s) -= A P

Z (s) R.C.S+ bI i P9 (35b)

Eq. (35b) can be substituted into Eq. (31) to give an expression for the nondimensional
mechanical impedance of a resistive shunted piezoelectric.
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Figure 3: Resister Shunted Piezoelectric Schematic

k2

RES k
J 1 + ip (36a)

where Pk is the nondimensional frequency,

S 0)
PkRkC pk 0 d (36b)

and C s was defined in eq. (29).

Materials Perspctive

Since there are no internal resonances, it is convenient to use (33a & b) to express
(36a) as a frequency dependent material stiffness and loss factor. The resistor can be
thought of as changing the material properties of the piezoelectric into those of a lossy
-material similar to a viscoelastic in behavior. Using (33a & b) to solve for
nondimensionalized expressions for 1i and E gives:

&k2
PE (to) Pi=

(1- k2)+ i (37a)

2

1 + pp 
(37b)

These relations have been plotted versus p, the nondimensional frequency (or the
nondimensional resistance) in Fig. (4) for typical values of the longitudinal and transverse
coupling coefficients. These curves are similar to the equivalent material curves for a
standard linear solid. As illustrated in the graphs, for a given resistance the stiffness of the
piezoelectric changes from its short-circuit value at low frequencies to its open-circuit value
at high frequencies. The frequency of this transition is determined by the shunting
resistance. The material also exhibits a maximum loss factor at this transition point. The
value of this maximum loss factor can be found to be:

ICC- 12



k2

max-j 2 2
2- k #(38a)

at a nondimensional frequency of:

p.=RCS 2 r -kP= RiCp °w= 1-k. (38b)

Thus by appropriate choice of resistor, the peak of the loss factor curve can be
moved to the desired frequency.

It is worthwhile to draw a comparison between resistively shunted piezoelectrics
and viscoelastic materials. The form of the frequency dependence of the viscoelastic can be
seen in Ref. [14] for typical damping materials. For common viscoelastic materials, the
peak loss factor occurs in a narrow frequency and temperature range where the viscoelastic
is in transition from its rubbery state to its glassy state. This placement is directly
analogous to the peak loss factor of the piezoelectric occurring at the transition from short
circuit to open circuit stiffness.

It should be noted that the loss factor curve takes the same form as the standard
relaxation curve for material damping, but can lead to material loss factors as high as 8.2%
in the transverse case and 42.5% in the longitudinal or shear cases for commonly available
piezoelectric ceramic materials. This compares favorably to the results obtained in Ref. [9]
for the effective material loss factor for a resistive shunted piezoelectric ceramic.

While these loss factor levels are not as high as those for viscoelastics, the
piezoelectric material (typically a ceramic) has higher stiffness than most viscoelastic
materials and thus stores more strain energy for a given strain. The piezoelectric ceramic
material properties also have the advantage of being relatively stable with temperature over
their operating range. Since their main constituant is lead, however, their density is 8 times
that of water. In all, the net effect is that in most structural cases shunted piezoelectrics will
provide higher total structural damping levels per unit mass with higher temperature
stability. These results for the resistive shunted piezoelectrics have been validated
experimentally and will be presented in a later section.

Systems Perspective for Determining Resistive Shunted Piezoelectric Effectiveness

Since the stiffness of the piezoelectric material is frequency dependant, maximizing
the loss factor of the piezoelectric material does not necessarily maximize the loss factor of
the total structural system of which the piezoelectric is a part. As shown by eq. (34) the
total damping of the system consists of the component damping weighted by the strain
energy fraction in that component. This strain energy fraction is frequency dependant for
shunted piezoelectrics since the piezoelectric stiffness varies with frequency. In order to
accurately model the system modal damping as a function of frequency or shunting
parameters (such as resistance), this frequency dependant stiffness must be carried through
the calculations.

Another method of obtaining the system modal damping which yields significant
insight into the problem is to represent a single mode of the system as a simple 1-DOF
system with a piezoelectric component in parallel to the system stiffness as shown in Fig.
(5). The mass and stiffness in the simple system can represent the modal mass and
stiffness of a multi-DOF system. In this case the modal stiffness of the piezoelectric should
also be used. The modal velocity of the piezoelectric system can be expressed in the
Laplace domain as:
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Figure 5: 1-DOF System with Shunted Piezoelectric Element in Parallel with the
System Modal Mass

F(s)

le (SSMs +----+ .. (s ) (39)

Where Ms is the impedance associated with the modal mass; K/s is the impedance
associated with the modal stiffness; and ZRES (s) is the impedance associated with the
resonant shunted piezoelectric's contribution to the modal mass. After reduction and
nondimensionalization an expression for the position transfer function of such a mechanical
system with a shunted piezoelectric in parallel with the base system stiffness and a force
acting on the mass can be found from eq. (39):

x ry+l
x ST  3 2 K1 K 2  1

(40)
where xs is used for F/K,,o and K, is the sum of the base system modal stiffness and the
piezoelectric open circuit modal stiffness. The nondimensionalization is defined relative to
the mechanical system's natural frequency with the piezoelectric open circuited.

K+K .

M (41a)

y= -s = nondimensional frequency9

0). (41b)

R.Cs oE = = electrical damping ratio

i i" = P = =°"x(41c)

The generalized electromechanical coupling coefficient, Kij, is defined:

K E kK 2.K+KE 1-k .. 2 k. .

X A{ j) (42)
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where K is the ratio of piezoelectric short circuit modal stiffness to the total system modal
stiffness. The generalized coupling coefficient reflects the fact that the piezoelectric is in
parallel with some other stiffness, and thus a smaller fraction of the system strain energy is
converted to electrical energy. It is proportional to the fraction of the system modal strain
energy which is converted into electrical energy by the open circuit piezoelectric. As such,
it is a direct measurement of a shunted piezoelectric's influence on a system.

The modal damping ratio can now be found exactly by solving for the roots of the
cubic equation in the denominator of eq. (40), or approximately using commonly available
root solvers. The exact technique was used to calculate the modal damping of the
cantilevered beam test article.

ADDlication: Resonant Circuit Shunting

Another case of interest is to create a resonant circuit by shunting the inherent
capacitance of the piezoelectric with a resistor and inductor in series forming a LRC circuit
for ZEL. This circuit is shown in Fig. (6). This resonant electrical circuit can be tuned in
the vicinity of a mode of the underlying mechanical system and thereby greatly increase the
attainable modal damping ratio, in an effect similar to the classical proof-mass damper
(PMD) or resonant vibration absorber.

With an inductor and a resistor in parallel with the piezoelectric's inherent
capacitance, the total electrical impedance can be written:

Z . I (s ) = L, s + Ri  (43a)
EL L, C; s 2 + R C; s

Z. (s ) =- ---L L.C T 2 + R.C T s + 1
S() iRC (43b)

were L, is the shunting inductance and R, is the shunting resistance. This circuit is clearly
resonant with some damping due to the resistance, R. Equation (43b) can be substituted
into eq. (31) and the results nondimensionalized to obtain the nondimensional mechanical
impedance of a resonant shunted piezoelectric:

RSP

(s) = 1- .  + 32y + o2) (44a)
where the nondimensionalizations are defined relative to some arbitrary normalization
frequency, won

), 1 electrical resonant frequency
LiTC (44h,)

8 = CO, = nondimensional tuning ratio
01). (44c)

and yand r are defined in eqs. (41b & c) respectively.
Equation (44) is an expression of the effective mechanical impedance of a

piezoelectric element shunted by a resonant circuit. The key parameters of (44) are the
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Figure 6: Resonant Shunted Piezoelectric Schematic

frequency tuning parameter, 8, and the damping parameter, r. These parameters are
directly analogous to the ones used in classical proof mass damper nondimensionalization,
Ref. [15]. The 8 parameter reflects the frequency to which the electrical circuit is tuned,
while the r parameter is an expression for the damping in the shunting circuit.

Materials Perspective

There are several ways to determine the parameters of eq. (44) which maximize
energy dissipation. One of these involves treating the resonant shunted piezoelectric as a
material with frequency dependant properties, in a fashion analogous to the resistive
shunting case. The expression for the effective impedance of the piezoelectric can be put
into a complex modulus form such as (33). This leads to complicated freqv. tcy-dependant
expressions for the material stiffness and loss factor.

E, (o k 2 g2)2+ (2r 2- ) (45a)

V3 ( 2rg).9 co (82_ g2)2 + (.5'rg )2 - k2.52('52_ g2)

# (45b)

where ELRc and 1 LRc are the effective material properties of the resonant shunted
piezoelectric, and g is the real form of y, (Uo/q). These expressions can be seen plotted in
Fig. (7) for common values of the parameters. They can be useful in system modelling if
the values of the parameters are already known. Both the effective material stiffness and
the damping vary nonlinearly with frequency and tuning parameter values, 8 and r. This
makes an optimization for energy dissipation difficult. The actual energy dissipated is
dependant on both E and Tl and can be calculated for the total system using eq. (34).
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Resonant Shunted Piezoelectric Material Properties
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Figure 7: Effective Material Properties of a Piezoelectric Ceramic Operating
Transversely and Shunted by a Resonant LRC Circuit.

Systems Perspective for Determining Resonant Shunted Piezoelectric's Effectiveness

The problems associated with the parameter optimization can be greatly alleviated
by observing certain key similarities between a system containing a resonant shunted
piezoelectrics (RSP) and a system zontaining

a proof mass damper (PMD). As illustrated in Fig. (8), the similarities in system
topologies suggest that the method for obtaining the optimum parameters for the PMD can
be applied to the RSP. The derivation for optimal tuning and damping of the electrical
circuit parallels the technique for determining the optimal tuning and damping ratio of a
PMD as outlined in Ref. [15].

These two systems can be thought of as complementary since the proof mass
damper appears as a point impedance in system modeling and thus damps out only the
available kinetic energy. On the other hand, shunted piezoelectrics are modeled as multi-
port impedances which derive their dissipation from the relative motion of two system
nodes. Thus they can be thought of as dissipating structural strain energy. This difference
will reflect on the optimum placement of the actual dampers.

Following the techniques of modeling the 1-DOF system presented in the section on
resister shunting, the modal deformation rate of the piezoelectric system with resonant
shunted piezoelectrics can be expressed in the Laplace domain as:

F(s )v(s )=K s

Ms +-+ Z. () (46)S 1 (46)

Where Ms, K/s are modal quantities, and zRSp(s) is the modal impedance associated with
the resonant shunted piezoelectric. After reduction and nondimensionalization, an
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Figure 8: Comparison of Resonant Damper Topologies between an RSP DampedSystem (A) and a PMD Damped System (B)

expression for the position transfer function of a mechanical system with a RSP in parallel
with the base system stiffness and a force acting on the mass can be found from (46):

__ (82+ y) + S'rr

2

xr (1 +v )(5 2 +r2+ 8ry) +K 2 (y + 6 2ry) (47)

where the nondimensionalization is the same as that used in eq. (44). The mechanicalsystem's short circuit natural frequency (defined in eq. 41a) is substituted for the
normalization frequency used in (44) and the generalized electromechanical coupling
coefficient, ) is defined in eq. (42).

For the-tuned PMD, the transfer function expression equivalent to eq. (47) is:

x s T (1+ 2 + + 2 _,)+ flry + 2F9) (48)
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with the ki used in the nondimensionalization set equal to zero and P equal to the damper
mass ratio as described in Ref. [15]. By comparing the form of these two equations, (47)
and (48), it is evident that the generalized electromechanical coupling coefficient for the

2tuned piezoelectric case, Kij , serves the same function as the mass ratio, 3, in the PMD
system.

Two techniques for determining the "optimal" tuning criteria will be presented. The
first technique parallels the min-max criteria (presented in Ref. [15] for PMDs) for
minimizing the maximum of the system transfer function by appropriate choice of the RSP
parameters. This technique will be referred to as transfer function optimization, and the
optimal parameters will bear the subscript, () . The second technique will depend on pole
placement techniques to choose system pole locations which maximize the magnitude of the
real part of the system roots. The optimal parameters using this technique will bear the
subscript, (). to signify pole placement.

Resonant Damper Optimization by Transfer Function Considerations

At this point the optimal tuning parameters using the transfer function technique can
be found by duplicating the argument for the PMD [15]. The first step in this process is to
find the magnitudes of the transfer functions which correspond to r = zero and r = infinity
respectively. From eq. (47) for r = 0:

22 2

XS (1- g2)(8 2 - g 2 )_ Kg (49a)

and for r = infinity

S = 2 _ g2(1+KI )-g (49b)
1~ =-

These two transfer functions can be equated and a quadratic expression found for the
intersection points, called the S and T points in the PMD analysis. This expression is

9 [( )+ 2 +[t 2 + K 2) o
From the quadratic formula, the sum of the roots of this equation can be found to be

2 2 B 1 + .) + e
gs + g =---A = + +(51)

Equation (49b) can be solved for the magnitudes at the S and T points. This gives another
expression for the sum of the two roots.2 ¢ 2 + 2)

gS_ T = (1 K (52)

Equating (51) and (52) leads to an expression for the tuning parameter which equalizes the
magnitudes of the S and T points. This is the optimum tuning parameter.

1+K
6TF + 9 K (53)

ICC- 20



Resonant Shunted Piezoelectric Transfer Functions
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Figure 9: Transfer Function for a Single DOF System Containing a RSP at Various
Values of the Damping Parameter,r

Once the optimal tuning has been found using the transfer function criteria, there are
several methods for determining the "optimal" damping in the electrical circuit. One
method entails setting the amplitude of the system transfer function at a chosen frequency to
the amplitude of the transfer function at the invariant frequencies, the S and T points. A
particularly convenient (though not technically optimal) frequency corresponds to the
electrical tuning at g = &. The amplitude of the S and T points can be found by first solving
equation (50) for the S and T frequencies. The roots of (50) are:

gs = 1 + KK) +  2 (54)

This expression can be substituted into (53) to yield the amplitude at S or T:

K (1+ K:)
s ,r (55)

Evaluating the system transfer function, eq. (47), at g = 8 and setting this amplitude equal
to (55) gives an equation that can be solved for a simple expression for the "optimal" circuit
damping:

opt K 9
S 1 + K. (56)
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The subscript, OTF, signifies that this expression was derived from transfer function
considerations. The effect of various circuit resistor values at optimal tuning is shown in
Fig. (9). As can be seen, the system sensitivities to damping parameter variations are
essentially identical to the PMD sensitivities. As the damping parameter is increased, the
two distinct system modes coalesce into a single mode which converges to the system
response with open circuit piezoelectrics as the damping parameter approaches infinity.

Optimal Tuning by Pole Placement Techniques

The second technique for determining the "optimal" tuning parameters is based on
s-plane methods described in Ref. [12] for PMDs and outlined in Ref. [9] for
piezoelectrics. The s-plane diagram in Fig. (10) shows the root locus for the poles of the
shunted piezoelectric system as the damping parameter, r, is varied. Just as in the PMD
case, as the damping parameter is increased the distinct poles can coalesce into double
complex conjugate pairs only if a special value of the frequency tuning parameter, 8, is
chossen. This point of coalescence is the point of leftmost excursion in the s-plane. The
pole placement method of optimization involves finding the values of the frequency tuning
parameter, 8, and the damping parameter, r, which give that point on the s-plane. The
poles of the system are found from the denominator of eq. (47). Assuming the coalesced
poles are located at the coordinates, s = a + ib, a - ib, a series of equations for a and b
can be found by equating corresponding terms of the characteristic polynomial found in the
denominator of eq. (47).

82r =-4a (57a)

(1+ 2) + K 2 =6a2+2b2
ii (57b)

22 2 2
32r(1+ K)=-4a(a +b) (57c)

8= a 2 + b2  (57d)
These equation can be solved for the parameters, r and 8, to give the value which results in
the coalesced poles:

opt 2
8P, =1+ K (58a)

2I I,ropt 2- i 0 _ opt +2
rpp : 3 = r F " 2

(58b)
The subscript, ()pp, has been used to signify that the expressions were derived from pole-
placement considerations. The transfer function corresponding to optimal tuning and this
value of r is shown in Fig. (9). This method tends to give higher steady state responses
than the first method presented.

As a practical point the various damper tuning criteria are indistinguishable in all but
the most sensitive experimental setups. The ratios given for optimal tuning and electrical
damping can now be used to add maximum damping to targeted structural modes. Use of a
tuned circuit can increase the structural mode damping several orders of magnitude above
simple resistive shunting at the cost of reduced damper bandwidth.
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Summary of Analytical Predictions

For resistive shunted piezoelectrics, the stiffness and loss factor of the
piezoelectrics were found to vary with frequency. The loss factor exhibited a maximum at
a frequency determined by the shunting resistance and the electromechanical coupling
coefficient of the piezoelectric. For common piezoelectric materials this loss factor can be
as high as 42.5% for the longitudinal and shear loading cases, and 8% for the transverse
loading case. This high loss factor, along with the high stiffness and temperature stability
of piezoelectric ceramics, makes them an attractive alternative to viscoelastic materials.

The shunted piezoelectric materials can be modeled within a structural system in
two principal ways. They can be modelled as having a frequency dependant complex
modulus and incorporated in the same manner as viscoelastic materials. Alternatively, their
internal dynamics can be modelled using mechanical impedance and assembled into a
system impedance model for dynamic analysis.

For resonant shunted piezoelectrics, the parameters of the resonant circuit can be
tuned to a structural mode so as to minimize the maximum response of the mode in a
fashion analogous to proof mass damper tuning. The effectiveness of the RSP damper at
optimal tuning is dependant on the generalized electromechanical coupling coefficient which
is a measure of the percentage of total system modal strain energy actually converted into
electrical energy by the piezoelectric. For typical structures where the piezoelectric contains
only a small fraction of the structural strain energy, the electrical resonance should be tuned
very close to the structural resonance. The optimal damping in the electrical resonance is
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also almost linearly dependant on the coupling coefficient in this case. Two sets of tuning
criteria are derived, depending on minimizing the magnitude of the transfer function, or
minimizing the real part of the system poles.

Descrintion of Experiments

Experiments were conducted to test the validity of the analytical formulae for
shunted piezoelectrics. The tests were designed to investigate the properties of the resistive
and resonant shunted piezoelectrics.

Dynamic tests were preformed on a cantilevered beam test article with surface
bonded piezoceramics and geometry as shown in Fig. (11). The cantilevered beam was
11.53" long, 1.0" wide, and 1/8" thick. Two sets of surface mounted piezoceramics were
bonded to the beam. The pair closest to the base was shunted while the pair furthest from
the base served to drive the beam. The shunted pair was located 97 mills from the base and
extended 2.44". The piezoceramic pairs were separated by 1".

The driving and shunted pairs consisted of 10 mil thick G- 1195 piezoceramic sheets
manufactures by Piezoelectric Products, Inc. The pairs were poled through their thickness
and actuated lengthwise, so that they were operating in the transverse mode. For both
pairs, the piezoceramics were attached to the top and bottom surfaces of the beam and
wired as shown in Fig. (11), so as to produce a moment on the beam if a voltage were
applied as described in Ref. [2]. The piezoceramics are attached to the beam with a very
thin layer of conducting epoxy. The beam is grounded and the positive electrodes are
attached to the exterior electroded surfaces of the piezoceramic pairs. This produces
opposite fields in the top and bottom piezoceramics (which are poled in the same direction),
and thus causes the top piezoceramic of a pair to contract as the bottom expands, producing
a moment on the beam. Likewise for the shunted pair, a voltage appears across the shunt if
the beam is bent. The material properties of the piezoceramics are presented in Table (1). A
more detailed discussion of modeling of surface bonded piezoceramics is presented in Ref.
[16].

In the shunting experiments, either a resister or a resister and inductor are placed
across the piezoelectric electrodes at Zu(s), as shown in Fig. (11). An uncorrelated,
pseudo-random voltage is then applied as an input at the positive terminal to excite the beam
in the vicinity of its first bending mode at 33 Hz. The white noise excitation signal is
produced by a Textronix 2630 data collection system and amplified by a Crown DC-300A
audio amplifier. The strain response of the beam is measured at a point 2.74" above the
base a shown in Fig. (11). The amplified strain signal is collected by the Tectronix 2630
and a transfer function from input voltage to strain is computed.

In the resistive shunting experiments the shunting resistor is varied over a range of
1/10 to 10 times the theoretical optimum value for maximizing dissipation. Using eq. (38b)
the optimum shunting resistance was found to be 28,680 ohms. For each resistance the
damping and frequency of the first beam bending mode are identified using a 4"' order

Table 1: Piezoelectric Properties of Shunted Piezoceramics

Coupling Coefficient k3, - 0.35
Elastic Modulus (free) EE1  = 63 Gpa

Dielectric Constant Jr3  = 1700e*

Capacitance !a1. , C = 0.156 jtfarad

Curie Temperature = 3600C
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Figure 11: Cantilevered Beam Test Article with Position and Arrangement of Shunted
and Driving Piezoceramic Pairs

Recursive Lattice Least Squares (RLLS) algorithm from Ref. [171 applied to the time
domain data from which the transfer functions are derived.

For the resonant shunting experiments, a resistor and inductor in series are placed
across the piezoelectric leads and the resistor and inductor are tuned to the first beam
bending mode, in accordance with eqs. (53) and (56). The transfer function from input
current to strain is then measured and compared to the theoretical response for a 1-DOF
system derived in eq. (47). The resistance is further varied in the range of the optimal
value to validate the behavior of the resonant shunted piezoelectric system in response to
parameter changes.

Discussion of Results

The experimental first mode damping for the resister shunting case is shown
compared to the analytical predictions in Fig. (12). In this figure, the experimental poles
were identified from the random time domain response using the recursive lattice least
squares algorithm mentioned previously. The identified damping ratio has been normalized
by subtracting off the inherent damping of the beam with the piezoelectrics shorted. The
curve thus represents only the damping increase afforded by the shunting process. This is
called the experimental added damping.

The two analytical curves were obtained by solving for the roots of the denominator
of eq. (40) exactly. The damping ratio was then found from the root location. The upper
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Figure 12: Comparison of Experimental and Analytical First Mode Damping Increase
as a Function of the Shunting Resistance

analytical curve reflects the value of the generalized electromechanical coupling coefficient
obtained for the shunted piezoceramic pair when a 5 mode Raleigh-Ritz analysis is used to
calculate the ratio of strain energy in the piezoelectric to that in the structure, K . For this
curve the values of the piezoelectric material properties supplied by the manufacturer were
used.

The first five bending modes of a uniform cantilevered beam were used in the 5
mode Ritz model which predicted a first resonant frequency of 35.65 Hz for shorted
piezoelectrics and a generalized coupling coefficient, K31, of 0.169. In this analysis, the
piezoelectrics were assumed to be perfectly bonded. Details of this type of analysis for
bonded or embedded piezoelectrics are presented in Ref. [16]. Since the actual beam had a
first natural frequency of 33.36 Hz and the Ritz model accurately represents the system
mass, it can be concluded that the Ritz model contains about 14% error in the modal
stiffness of the beam. This error will effect the predicted piezoelectric performance. It can
be partially accounted for by the finite thickness bond layers of the shunted and driven
piezoceramic pairs. The Ritz model thus overestimates the amount of strain energy in the
piezoceramic and thus the performance of the resistive shunting.

An alternative approach is to obtain the generalized coupling coefficient by a simple
experiment. If it is noted that for a mode of a structure the frequency changes as the
stiffness of the piezoelectric changes from its short circuit to open circuit value:

KE
K+ -

K+ E 
1- k.2

E KP DMI" and to= M (59)

then a simple expression for the generalized coupling coefficient for a piezoelectric bonded
to a structure can be obtained from the frequency change in these two cases:
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2 2

(n) (60)
The lower analytical curve was obtained by experimentally measuring the first natural
frequency of the beam with the shunted pair open or shorted and applying eq. (60) to
obtain the generalized electromechanical coupling coefficient. The value obtained was
0.157. This value was then used in the denominator of Eq. (40) and the resulting roots
found. As can be seen in Fig. (12), this method exhibits much better agreement with the
experimentally determined added damping.

The conclusion of this analysis is that the resistive shunting piezoelectric effect is
accurately modelled using the equations presented in this paper, and that the main source of
error is in the mechanical models of a piezoelectric bonded to a structure. The experimental
curve exhibits the form of the analytical predictions and agrees well with theory once the
generalized coupling coefficient has been accurately obtained. For this particular specimen
the amount of damping added is not large, because the piezoelectrics store only a small
portion of the strain energy and are operating transversely.

The beam transfer functions from applied voltage to strain guage with optimally
tuned resonant shunted piezoelectrics are shown compared to the same transfer functions
for the beam with shorted or open circuit piezoelectrics in Fig. (13). The change in natural
frequency from the shorted to the open circuit piezoelectrics is clear from this figure. The
optimal shunting parameter values were calculated from the transfer function criteria (eq. 53
and 56) using the value of the generalized coupling coefficient found from eq. (60). These
corresponded to a 142.4 Henry inductor and a 6640 ohm shunting resister. The large
inductor was necessary to produce a low electrical resonant frequency.

The resonant shunted piezoelectric pair was found to produce a 35 db drop in peak
vibration amplitude from the shorted or open circuit case. This large amplitude reduction is
in good agreement with the analytical curves for a 1-DOF system obtained from eq. (47).
The experimentally determined natural frequency and base damping of the beam with
shorted piezoelectrics were used in the analytical curves as well as the coupling coefficient
found by eq. (60). The 1-DOF system curves agrees well in the vicinity of the resonance
but fails (as expected) to capture the multiple mode nature of the beam. For this reason the
rolloff amplitudes are not identical.

The variation in the beam response as the shunting resister is varied away from the
optimal value is presented in Fig. (14) and shown to exhibit tendencies precisely as
predicted by the analytical model. This close agreement validates the resonant shunted
piezoelectric model. As predicted, the system exhibits two distinct modes when the resister
is below its optimal value. As the resistance is increased these modes coalesce into a single
mode which converges to the beam response with open circuit piezoelectrics.
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Conclusions

A new type of structural damping mechanism has been presented based on
piezoelectric materials shunted by passive electrical circuits. A model for general shunting
of these materials subject ot arbitrary eleastic boundary conditions was developed to
determine the 6x6 material compliance matrix when the material is shunted. This model
was found to simplify in the case of uniaxial loading and electrical field with the
introduction of the material electromechanical coupling coefficient.

The uniaxial equations were then applied to the cases of resistive and resonant
circuit shunting. In the resistor shunting case, the optimal shunting resistance for
maximizing the piezoelectric material loss factor at a given frequency was determined. The
material loss factor was found to be as high as 42% in the longitudinal loading case for
commonly available piezoceramics. The high loss factor, together with the high stiffness
(63 Gpa) and temperature stability, makes resister shunted piezoelectrics an attractive
alternative to viscoelastic materials in structural damping applications.

The problem of determining the global system damping was discussed in the
context of the frequency dependant material properties of the piezoceramic, and two
techniques were suggested. The shunted piezoelectric elements can be incorporated into the
structural stiffness model via a complex modulus representation (like for viscoelastic
materials), or analyzed as complex impedances and included in a complex system model
(like for electrical systems). Both modelling methods yield identical results. For systems
analysis, the energy transfer from the mechanical to electrical parts (and therefore the
effectiveness of the shunted piezoelectric) is governed by the generalized electromechanical
coupling coefficient which serves as measure of effectiveness. The square of this
coefficient represents the ratio of modal strain energy which is converted into electrical
energy by the piezoelectric.

Resonant circuit shunting of piezoelectrics was also modelled and shown to exhibit
behavior very similar to the well known mechanical tuned vibration absorber. The analogy
with the mechanical damper suggested a method of tuning the resonant shunting circuit to a
structural mode to optimally damp it. Tuning criteria were developed for the shunting
circuit which either minimized the peak amplitude of the system transfer function or placed
the poles as far right as possible in the s-plane. The resonant shunting can have large
effects on the mode to which it is tuned while the resistor shunting has a larger bandwidth.

Experiments were conducted on a cantilevered beam which validated the shunted
piezoelectric models. The models developed were able to accurately predict the influence of
the shunted piezoelectrics on the cantilevered beam damping in both the resistive and
resonant shunting cases. In both cases, the models also correctly predicted the optimal
tuning parameters and effect of variations away from the optimal parameters.

Great benefits for base system energy dissipation can be attained by shunting the
electrodes of the piezoelectric material with appropriate passive circuits. The passive
shunting introduces damping at the piezoelectric but does not preclude the use of shunted
piezoelectrics as actuators in structural active control applications. The analytical models of
the shunted piezoelectric, as well as the experimental verification of these models, provides
a solid groundwork for future structural damping applications of shunted piezoelectric
materials.
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ABSTRACT

A non-magnetic metal moving through a region of non-uniform magnetic
field experiences a drag force. For some simple, one-dimnsional or axi-
symmetric cases, it is possible to obtain an exact analytical solution. For
more complex geometries, finite element (FE) methods are the most practical
means of calculating the force between a configuration of magnets and a
moving conductor. This paper describes how FE calculations can be performed
and shows that good agreement can be obtained between FE calculations and
the measured response. When a conducting plate, bar or rod is constrained
to move near certain configurations of high energy density, permanent
magnets, a large drag force proportional to the relative velocity is
produced. This drag force can be used to damp mechanical motion. This
paper presents several candidate magnet-conductor configurations that could
be used as vibration damper assemblies. The next step is to design damper
assemblies for particular modes of a specific structure and then to compare
the calculated with the measured performance of these dampers.

* This work was supported in part by the Air Force Office of Scientific
Research through the Small Business Innovative Research p ram.
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1.0 INTRODUCTION

The reduction or elimination of unanted structural motion is an ever
present problem in mechanical structures. Many very clever and effective
solutions have been developed to address vibration damping under a wide
variety of circumstances. This paper shows that electromagnetic damping as
described herein should beccme one of the candidate technologies that is
routinely considered for adding passive damping to structures. Several
modifications of the passive damping approaches discussed in this paper are
also candidates for combined active and passive dampers but these are not
discussed here.

2.0 GENERAL BACKGROUND THEORY

Currents are induced to flow in any conductor moving through a region
of localized magnetic field; these currents and fields obey Maxwell's
equations o B

VAE =- -
t (1)

and
VIT (2)

For non-magnetic metals such as aluminum, the appropriate constitutive

equations for the moving conductor are

T <rE V. (3)

and H
_ . (4)

where v(_r,t) is the velocity of the conductor relative to the magnetic field
B(r,t), or is the electrical conductivity and Vj is the magnetic permeability.
Following standard convention, solutions are developed in terms of a vector
and scalar potential such that

E = - A --
) t(5)

= V ^A (6)

Substituting Equations (5) and (6) into Equation (3) gives

0,=q 8 -+ vVA A~ - 7- (7)

Under most conditions at low frequencies, the time derivative of A will be
much smaller than the velocity term and one can write

ZT = <T v /\ V _A - V Vq (8)

With zi loss of generality for 2D current flow, one can take A = (O,O,A) and

(aA/az) = 0. Consequently,

BA B y A B 0 (9)
1) x

ICD-2



One is free to chose the gauge such that g.A = 0. Let us consider the
special case of a conducting plate moving in the y-direction (therefore
y = (O1V,0)) with the magnetic field confined to the x-y plane as required
by Equation (9). Combining Equations (2), (4), (6) and (8) gives

. A 2A + Tv A - V0 = O (10)

Solving Equation (10) gives the magnetic field and its gradients (and hence
the current density induced in the conductor).

The total power dissipated by the moving conductor is given by

a- S corndudtov UI
The equations developed above neglect any skin depth effects. If conditions
are such that motion causes a significant screening of the inside of the
conductor, then the term in A/at in Equation (7) must be included. The
solution is straightforward but considerably more complex than the outlined
given above.

3.0 FINITE ELEMENT CALCULATIONS

The standard starting point for electromagnetic finite element (FE)
calculations is Equation (10) with the velocity dependent term equal to
zero. It is well known that the solution of a partial differential equation
(PDE) containing a term like (V A/ay) such as in Equation (10) is difficult
to solve using numerical procedures because there is a tendency to generate
oscillatory solutions.

I

Variational calculus shows that, if a functional F satisfies the
equation

SL (c)A Y)J (12)

X

then F is a solution to the PDE given by Equation (10). With some
considerable efforts, we ha.e shown that

F' Yy(13)
reproduces Equation (10) and hence can be used in the Ritz method for
obtaining a FE solution to Equation (10).

Using the functional given by Equation (13), we have developed a FE
solution to Equation (10). One particular case is shoam in Figure I where
an aluminum plate is moving with a velocity of 1 m/sec between the poles of
a magnet that produces a maximum field of about I T in the gap region. It
is clear that the magnetic field lines within the plate are altered
substantially by current induced with the plate when it is moving.
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4.0 COMPARISON WITH EXPERIMENTS

One of the most widely studied and easily understood mechanical systems
is the damped forced oscillator. This system, shown pictorially in
Figure 2, was chosen for a quantitative evaluation of passive
electromagnetic damping. Aluminum plates up to 6 =u thick were placed as
shown at the end of a long string to form a pendulum. For the case
described here, this pendulum had a frequency of 1.06 Hz. The Al plate
could be driven by a linear motor shown pictorially as B I on the left hand
side in Figure 2. The horizontal velocity produced by this driving force
was measured using a calibrated electromagnetic velocity sensor shown
pictorially on the right hand side in Figure 2.

This geometry does not satisfy all of the constraints imposed on the FE
solution, namely the magnetic field In the z-direction (vertical direction
in Figure 2) is non-zero in some regions. We handled this by first
calculating the damping per unit volume assuming the plate to be infinite in
extent and the magnetic field to be constant within the rectangular region
defined by the dotted lines in Figure 2. The actual damping was calculated
by using the calculated damping per unit volume and the actual volume of
conductor over which there existed a magnetic field greater than 0.7 of the
maximum gap field.

5.0 A DRIVEN DAMPED HA1W4ONIC SYSTEM

A driven, damped, harmonic system is described by the equation

x 2b6 L0 O R Psin('t (14)

where M is the mass of the moving system, P is the peak driving force, b is
the damping or drag coefficient, Wc is the system resonant frequency. The
steady state solution is given by

P/M (15)

The experimental setup shown in Figure 2 gives directly the peak velocity.
The damping coefficient, b, can be obtained directly from these
measurements. To do this, let us rewrite Equation (15) as

( ijwl2 W (+2 Z .4(M )2- 2 (16)

PIotinci (..X.) Zagainst W2oL - (A4.fw 4, one obtains a straight
line with slope (M/P)Z and intercept of (2Mb/P)L from which one obtains b.
It is also customary to define a damping constant k = 2b.
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Figure 3 shows the velocity amplitude as a function of frequency,
f = u/aZi1 for a particular value of magnetic field. When plotted as Equation
(16), one obtains the graph shown in Figure 4. From this and many similar
plots, one finds that, as expected, the power dissipated by electromagnetic
damping is quadratic in both velocity and magnetic field. At the highest
field of 1.5 T where we have the greatest accuracy in our measurements, the
damping factors are

b(EXP) = (101 + 6) /sec; k(EXP) = (21 + 1) kg/sec

A FE calculation performed as described above for this same case yields

b(FE) = 72 /sec ; k(FE) = 15 kg/sec

We regard this as good quantitative agreement. Of course, better agreement
could be obtained using a 3D FE code but this would be a great deal more
time consuming to develop. A single point calibration that normalized the
calculated magnetic field to the measured value in the gap would also reduce
the difference between calculated and measured values for the damping.

6.0 POTENTIAL DAMPER CONFIGURATIONS

Although our example of a pendulum is an excellent case for
demonstrating that there is good quantitative agreement between FE
calculations and the measured behavior of a damped harmonic system, the
magnet and conductor configuration that was used is not very practical. For
many applications, we expect that it will be most practical to have magnets
near only one surface; that is, it will not generally be practical to place
the moving conductor within the gap of a permanent magnet. Figure 5 shows
one magnet configuration that provides good damping. An array of
rectangular permanent magnets is placed with alternating magnet poles
adjacent to each other as shown in Figure 5. This magnet stack is attached
rigidly to some portion of the structure that will move relative to the
conductor that is adjacent to the magnet assembly. Damping results when the
magnet assembly moves relative to the conductor. The dimension of the
magnet pole height shown in Figure 5 determines the magnetic field liftoff
coefficient or how rapidly the magnetic field decreases with distance form
the pole face. This, in turn, determines the thickness and closeness of
conducting material that should be used in the damper. In general, a
damping constant of about 20000 kg/sec/m of pole area can be obtained for
each 1 mm in thickness of Al conducting material. Clearly, for the greatest
damping, such a damper should be placed between two points on a structure
having the largest relative velocity.

Figure 6 shows an inertial damper that is a modified version of the
damper in Figure 5. The non-magnetic springs keep the damper sonewhat
centered. ten the structure to which this damper is attached is
accelerated, the magnet assembly will move relative to the suport Al tube.
Energy will be dissipated as long as this relative motion exists.
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A damper assembly capable of withstanding very large loads and
providing a large damping constant is sham In Figure 7.

7.0 ADDITIONAL CONSIDERATIONS

Like standard viscous damping, electromagnetic damping results from a
force that is velocity dependent. This raises questions about the
effectiveness of this damping at very low velocity. To evaluate the low
velocity behavior in a qualitative manner, we constructed a simple loaded
cantilever beam having an oscillation period of about 2 secands. A stiff
plate attached to the free end of the beam formed the moving plate of an
electrmagnetic damper assembly. This plate moved between the poles of an
electronagnet having a pole area of 0.5 squiare inches and a gap field that
could be as large as 1.8 T. A velocity sensor similar to the sne sham in
Figure 2 was used to measure the velocity of the free end of the beam.
Figure 8 shows a sequence of velocity-time waveforms immediately after the
beam was deflected 1 an fran its equilibrium position. Figure (8a) shows
the behavior for zero applied field (about 0.05 T residual field). At a
field of 0.67 T, Figure (8d) shows that one gets the most rapid return to
equilibrium. Figure (8e) Is very near the condition of critical damping
while Figures (8f) and (8g) show that damping beyond critical damping can be
achieved. Clearly, damping exists, as expected, do to the smallest
measurable velocities.

8.0 SUMtAR AND CONCLUSIONS

In this paper, we have shown that the damping that results fro a
conducting, non-magnetic plate moving near the pole of a permanent magnet
can be understood in a very quantitative manner. In addition, the expected
quadratic dependence upon relative velocity (between the plate and magnet)
and magnetic field has been demonstrated. Several magnet geometries that
are adaptable to practical damper configurations have been suggested. To
date, no quantitative measurements on any of these assemblies have been
made.

Electromagnetic dampers have some advantages over other means that have
been used to achieve damping. Since the energy is dissipated within an
excellent thermal conductor, there Is no problem in removing heat when large
average powers are involved. Nearly all the temperature dependence arises
from the electrical conductivity (see Equation (11)). This is a very mild
temperature dependence compared to that encountered in using viscoelastic
aterials (VEMs). A single damper assembly could operate very well over a

tm.p:rature range of several hundred Kelvin. Behavior of electromagnetic
duers (E)s) Is extremely predictable under a wide variety of conditions.
Um can tolerate operating at elevated temperatures (in sate cases, up to
about 1000 K) and in very high radiation (neutron, guuna or X-ray) fluxes.

Although the detailed description of EDs given in this paper is only
applicable at relatively low frequencies (may below 100 Hz), the basic
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damper field of 9.6 kG and (g) a damper field of 11.5 kG.

ICD-10



physics described by Equations (1) to (8) is valid up to several hundred
megahertz. The primary effect of higher frequencies is to reduce the
effective volume of conductor that is contributing to the damping. This can
be overcome to some extent by using different conductor configurations.
Basically, we see no problem in realizing damping up to many megahertz.

Another advantage of ED is that there is absolutely no hysteresis in
either the amplitude or time behavior.

Varying the thickness of the conductor gives some degree of external
control over the damper.

It should also be easy to couple the passive ED discussed in this paper
with active control. For example, it is possible to embed current loops in
(but insulated from) the conducting plate. Displacement or velocity sensors
can be used in the conventional manner to feed current through these control
loops to cancel unwanted motion. In fact, an inductive element attached
to either the magnet or plate assembly can be used as the velocity sensor in
this feedback loop because the time dependent fields that are produced
external (or internal) to the conductor depend quadratically upon the plate
velocity. These same current loops might also be used to extract small
amounts of standby electrical power from the ambient mechanical noise. This
standby power could be used to energize local field (velocity) sensors and
thereby produce signals that could be used by the control system.

At low velocity: there can be very poor impedance matching in the sense
that much more force is available for damping than is actually being used.
When this is the case, ED will be improved by using a mechanical means of
amplifying the displacement (velocity).
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DEVELOPMENT OF A NOMOGRAM FOR SELECTION

OF A VISCOELASTIC FREE LAYER DAMPING MATERIAL

By

Robert J. Dominic
University of Dayton
Research Institute
Dayton, OH 45469

(513) 229-2644

ABSTRACT

During recent years the University of Dayton Research Institute
(UDRI) has implemented the concept of design, development, and production of
viscoelastic damping materials to attain customer-specified damping
performance. The desired damping performance may be for a new application or
may be for an improvement that substantially increases the damping over that
being obtained from the customer's currently used material. Usually several
new candidate materials are produced in trial quantities and their damping
properties are evaluated by standard vibrating beam tests. Then analytical
estimates are made of their performance in the customer's system
configuration. The entire procedure may be repeated several times as
improvement trends due to material component ratios and processing variables
are exploited. UDRI has developed a System Damping Nomogram (SDN) for free
layer damping systems whereby the relative system damping performance of
competing materials can be shown over a temperature range of interest by
plotting data points extracted from the Reduced Temperature Nomograms (RTN)
of the materials. As the new materials are characterized by vibrating beam
tests, the system damping performance that results from their use can be
determined and compared to previous material results by plotting appropriate
data on the SDN. The development and use of the SDN will be explained.

INTRODUCTION

There are many ways to display the performance of a damping system,
whether in lists or tables or graphs. We are considering here the
performance of a configuration of a particular damping material installed to
a structure, not the damping properties of the material itself. Those who
work primarily or frequently towards the alleviation of vibration-induced
noise or structural fatigue failures by use of the damping methodology
usually are comfortable with any of these damping performance
representations. Your boss will usually be in this category; however, your
customer may or may not be in it. The system damping performance nomogram
(SDN) presented here provides a clear picture of how damping material
property changes affect the damping performance of a specific damping system.
It is useful for convincing yourself, your boss, your customer, and
especially people who are peripheral to the problem but have authority to
make program decisions, that you are achieving significant system performance
improvement. In the programs discussed here, the performance improvement is
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obtained by formulation modifications of a damping material to improve the
performance of a damping system specified by the customer.

I want to make it clear here that most of the material development
work we perform for both government and industrial customers is restricted
from public distribution at various security classification levels.
Therefore, the example used for this paper was not a real project.

DEVELOPMENT OF THE SYSTEM DAMPING NOMOGRAM

Damping system design, as well as the development of the SDN,
requires certain knowledge about the vibration problem which is being
addressed. This includes:

i. the frequency of the primary vibration resonance of concern;

2. the structural temperature or temperature range at which the
vibration occurs;

3. the configuration and material properties of the structural
component(s) involved; and

4. the configuration of the desired damping system, or at least the
configuration limitation parameters of the damping system. -

When these facts are known, the best damping material currently available to
solve the problem can be selected. Alternatively, a special damping material
can be formulated with damping properties which fit the problem better. The
parameters of the problem selected as an example are the following. The
structure is a cantilevered aluminum beam and shows a high resonant vibration
measured to be the second bending mode at 400 Hz in the operational
temperature range of 40 to 70°F. For whatever reasons, a free layer damping
system is required with the damping layer no thicker than the aluminum to
which it is installed. This is, of course, a simpler problem with a more
clear definition than you usually encounter.

We want to generate an SDN, Fpecific to the problem, upon which we
can plot the damping properties of elastomeric polymer materials which we
might use as the free layer damping material. The SON should show us the
system damping achieved at 400 Hz over the temperature range of 40 to 70'F
for each damping material under consideration. The SDN layout data can be
generated easily by a damping system prediction computer program. Our
program uses the beam damping equatinns of Ross, Kerwin, and Ungar (R-K-U
Equations); and the Oberst Equation. In this case we use the free layer
cantilever beam adaption of the Oberst Equation, one of the many options in
the program. In addition to the configuration information, required material
properties of the structure are entered to the program as are a range of the
damping material properties of elastic modulus (Young's modulus) and loss
factor, and also the expected density of the damping layer material.
Structural dimensions may have to be varied somewhat to achieve the desired
resonance mode at the structure's resonance frequency.

The computer printout for this example, showing input data and the
calculated system damping loss factors and vibration frequencies, is shown in
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Figure 1. The SDN is layed out from the material and system loss factor
values in this list, and is shown in Figure 2. The system and material loss
factor scales of the SON usually are adjusted after evaluation of several
candidate materials' damping performance.

USING THE SDN

Use of the SDN requires knowledge of the loss factor and elastic
modulus, at the specified frequency and over the specified temperature range,
of the candidate damping materials. This information is all incorporated in
the "Reduced Temperature Nomogram" (RTN) depiction of material properties,
developed by Dr. Dave Jones of AFWAL/ML with the cooperation and/or
assistance of several others. It is assumed that the reader is familiar with
the RTN and its use. Loss factor and modulus equations are commonly fitted
to damping material test data displayed on the RTN. The equations then can
be used to determine coincident values of damping material properties or they
can be determined manually on the RTN. The manual method was used for this
example.

Figure 3 shows the RTN of a rather poor example of a free layer
damping material, for this or any other problem. The drafting construction
to pick material properties values for use on the SDN are shown on this
figure. The 400 Hz frequency line is drawn first. Then horizontal lines are
drawn through the loss factor curve at convenient values and verticals are
drawn through those intersections which extend through the 400 Hz line and
the modulus curve. Then horizontals are drawn through the modulus curve
intersections with the verticals to make it easy to determine modulus values.
Pertinent data is the 400 Hz value, the circled loss factor and modulus data
point values, and the temperature values at the intersections of the
verticals with the 400 Hz line. The loss factor-modulus data points then are
plotted on the SDN with the appropriate temperature noted at each data point,
as shown in Figure 4. This SDN shows rather poor damping performance, though
you might think otherwise if you had a part that was failing at 10 or 20
percent of its design service life. The damping performance does cover the
desired temperature range, but we can do better.

COMPARISON OF TWO SIMILAR DAMPING MATERIALS

Figures 5 and 6 show the RTN's of two very similar materials which
appear to be different because the nomograms are plotted with different T0
values but identical reduced frequency scales. Figures 7 and 8 show the 0
drafting construction to pick the data values for the SDN. That SDN is shown
in Figure 9 and does indicate that the two materials are fairly close in free
layer damping performance, but material A is better.

One problem with the SDN is the difficulty in following the
temperature trend of the damping performance comparison at the glassy end of
the transition region where elastic modulus values are high and loss factor
values are low. The solution to this problem is to plot the system loss
factors versus temperature over the desired temperature range. That
comparison plot for these two materials is shown in Figure 10 for the
temperature range of 30 to 80"F, just in case this range turns out to be
different than we were told when we started. Figure 10 shows more clearly
that material A provides better damping. Remember that this is not a real
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problem. We can obtain three to four times this level of damping with all
optimum free layer damping material formulated to fit specific problem
conditions.

We have found the SON to be useful. It is not difficult to generate
or to use. It and the system damping versus temperature plot have been used
to convince people that significant progress was being made. Damping
performance improvements in systems using materials developed under this
monitoring method have been almost exactly what the SON predicted. The
analysis is capable of predicting damping system performance on numerous beam
and plate configurations for both free layer and constrained layer damping
systems. Real problem solutions usually achieve considerably higher system
damping levels than was shown by this example.
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BEAM PARAMETERS:
BEAM TYPE: CANTILEVER
FIRST BEAM BENDING MODE NUMBER: 2
LAST BEAM BENDING MODE NUMBER: 2
BEAM LENGTH: 11.000 in
BEAM THICKNESS: .25 If
BEAM DENSITY: .100s lb/cu Ln
BEAM YOUNG'S MODULUS: l.90@E+67 pGL
DAMPIN6 MATERIAL DENSITY: .0660 lb/cu in
DAMPING MATERIAL LOSS FACTOR:
DAMPING MATERIAL THICKNESS: .250 in

BEAM COATED ON ONE SIDE

MODE NUMBER 2
BARE BEAM FREQUENCY IS 410.96 HZ

MATERIAL LOSS FACTOR IS .5 MATERIAL LOSS FACTOR IS 1

SYSTEM SYSTEM
MATERIAL LOSS SYSTEM MATERIAL LOSS SYSTEM
MODULUS FACTOR FREQUENCY MODULUS FACTOR FREQUENCY

-------------------------------------------------------------------------

2.00@E+06 .29167 581.2 2.66E+6 .58333 581.2
I.00@E+06 .24915 480.9 1.999E+96 .49830 480.9
7.s9eE+@S .22325 449.3 7.S90E+06 .446S9 449.3
5.@0SE+@S .18324 413.7 S.600E+65 .36648 413.7
4.00@E+OS .16116 398.1 4.90@E+OS .32219 398.1
3.0eeE+os .13386 381.6 3.9eeE+eS .26773 381.6
2.0E+05 .09985 364.0 2.90eE+es .19976 364.0
1.SOGE+OS .079S6 3S4.6 I.SSOE+95 .s1911 3S4.8
1.000E+0s O65654 345.2 1.90*E+5 .11307 345.2
7.50OE+64 .64384 340.3 ?.SOOE+04 .00768 340.3
S.660E+64 .03625 33S.2 S.66eE+04 .66049 335.2
3.60E+04 .1867 331.2 3.666E+04 .03733 331.2
1.90*E+e4 .0064, 327.0 1.40E04 .01281 327.6

MATERIAL LOSS FACTOR IS 1,S MATERIAL LOSS FACTOR IS 2
SYSTEM SYSTEM

MATERIAL LOSS SYSTEM MATERIAL LOSS SYSTEM
MODULUS FACTOR FREQUENCY MODULUS FACTOR FREQUENCY

----- ----------------------------- --------------------------------------

2.90@E+96 .87560 S01.2 2.46@E+66 1.16667 581.2
1.0E+06 .7474S 480.9 1.00E+06 .99661 480.9
7.S@E+6S .6697S 449.3 7.S99E+6S .99306 449.3
s.006E+05 .54972 413.7 5.400E+0s .73296 413.7
4.oeeE+eS .48329 398.1 4.60E O5 .64439 398.1
3.006E+9S .40159 381.6 3.00E+OS .53546 381.6
2.60@E+65 .2995S 364.0 2.60E+GS .39946 364.0
l.SOE+ .23867 354.8 1.600E+0 .31823 354.8
1.006E+0S .16961 345.2 1.e0E+6S .22614 345.2
7.506E+04 .1315 340.3 7.SOOE+e4 .17S35 340.3
S.609E+04 .09674 335.2 5.6@E604 .12e98 335.2
3.000E+04 .690 331.2 3.40@E+04 .07467 331.2
1.909E+04 .01921 327.0 1.90@E+64 .02s62 327.6

Figure 1. COMPUTER RUN TO GENERATE NOMOGRAM

LAYOUT DATA.
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Coupled Modal Damping in Transient Solutions

Bruce C. McFarland *

Allen J. Bronowicki t

TRW Space & Technology Group
Redondo Beach CA 90278

March 8, 1989
U

Abstract

The modal strain energy technique allows one to compute equivalent viscous damp-
ing ratios for real normal modes given structural loss factor data. This concept is
generalized to include inter-modal coupling effects due to damping forces. Off-diagonal
terms in the modal damping matrix are normalized by the geometric mean of the
natural frequencies of the coupled modes. Incorporation of the damping model in a
transient analysis scheme is described. The model is then demonstrated on a space
structure. The effect of damping coupling is shown to be significant when damping is
heavy and modal frequencies are closely spaced.

"Staff Engineer, Dynamics Department
t Head, Analytic Methods Section
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1 Introduction

The modal strain energy (MSE) technique is a common means of computing equivalent modal
damping values for simplified dynamic analysis of systems having structural losses. The
method bases the viscous damping ratio assigned to each normal mode on the relative degree
of participation in the mode of the various component strain energies, and on the material loss
factors in those components. This is a rule of mixtures approach to damping. Apportionment
of damping values by mode is useful since it allows one to construct a damping model in
which modal damping values do not rise with modal frequency. Generation of physical
equivalent viscous damping models have the undesirable effect of producing modal damping
values which are proportional to modal frequency.

The technique of basing modal damping values on strain energy participation was first
proposed by Ungar [1]. The method was applied to viscoelastic materials using standard
finite element codes by Rogers et. al. [2]. It has since seen increasing use in the aerospace
industry. The technique allows one to avoid solving a complex eigen-problem by assigning
a viscous damping ratio to each real normal mode. The assumption is that damping forces
are smaller than elastic forces, and hence do not affect the orthogonality properties of the
modes. The standard application of this method thus does not account for coupling between
the response of the modes due to the viscous forces. It was shown in Reference 3 that the
effects of damping coupling between real normal modes are negligible for lightly damped
structures whose modes are well separated in frequency. However, when structures are
heavily damped and natural frequencies are not well separated, coupling between modes due
to damping forces can be significant. The modal strain energy technique is extended in this
work to account for these inter-modal coupling forces. The result is a coupled modal strain
energy (CMSE) technique.

2 Damping Models
The following development works toward an equivalent viscous treatment of structural damp-
ing which includes inter-modal coupling effects. The CMSE formulation allows the computa-
tion of transient response directly, without recourse to transform techniques. An appropriate
starting point for the derivation is the set of non-homogeneous equations of equilibrum in
the frequency domain.

[-1'[M] + [K] +j sgn(Q)[K']]{X(2)} = {F(Q)} (1)

The system mass, stiffness and structural damping (or loss) matrices, [M], [K] and [K'],
respectively, are assumed to be real, symmetric and frequency independent. In the case of
viscoelastic materials the stiffness and loss matrices actually depend on frequency. The MSE
technique often employs material property data near a given natural frequency to obtain
equivalent damping values for modes in the vicinity of the assumed frequency. In that case
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the matrices are assumed to be piecewise frequency independent. For the purposes of this
development the assumption of frequency independence is adequate. The sign function is
required to ensure that the damping forces always oppose the velocity.

The stiffness and loss matrices are formed from the assembly of a number of elemental
stiffness and loss matrices, [I'] and [K5']. The elemental loss matrices are assumed to be
related to their stiffness counterparts through a simple scalar loss factor, gi. The system
stiffness and loss matrices are thus represented:

[K] = Z[K,] (2)
i

[K'] = Z[K)'] = E ,gi[K] (3)
S S

The nomenclature "element" may also be taken to mean component or material. The system
is merely being subdivided into regions having a constant loss factor.

The objective of the following developments is to find a simple means of computing
transient dynamic response which adequately matches the dynamics described by Equation 1.
One could simply apply transform techniques to these equations, but the resultant response
would be non-causal as discussed by Crandall [4]. A more physical approach which produces
the desired behavior without introducing non-causality is desirable.

At a single response frequency, Qo, one may compute an equivalent physical viscous
damping matrix [C] = [K']/Q0 such that the viscous loss forces equal the structural loss
forces defined in Equation 1. When the system loss matrix is strictly proportional to the
stiffness matrix a set of modal damping ratios may be obtained. In that case these modal
damping ratios will be linear with modal frequency. High frequency modes become heavily
damped and low frequency modes are lightly damped. This is contrary to the structural
damping assumption in which all modes are damped equally when the material is uniform
throughout the structure. Thus equivalent viscous damping matrices formed in this simple
manner are not realistic.

2.1 The MSE Technique

The MSE technique begins with real normal modes satisfying the system eigenproblem with
damping terms discarded:

[K][4I]--[M][I][w 2] (4)

The resultant modes are normalized to give a unit diagonal modal mass matrix. The modal
transformation {x} = [0]{7} is then applied. Mass-orthonormalized modes are assumed in
the ensuing discussion. A truncated set of modes will generally be employed so that the
number of modal coordinates, rq, will be less than the number of physical coordinates, x.
Time domain equations of motion in the modal space may then be defined as follows:

[I]{iJ} + [c]{2} + [w2 ]{?(t)} = [4iDT {f(t)} (5)
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where [c], the viscous damping matrix in modal coordinates, is yet to be assigned. In the
MSE method the off-diagonal terms of [c] are zeroed out and viscous damping ratios are
assigned to each mode m as follows:

2 - EgI{4'} T [K']{qf'} Eg{¢b} T [K'{m} (6)
{2m}T [K]{Wm} W2 (6)

where use has been made of the diagonalization of the stiffness matrix by the mode shapes.
Notice that the term in the numerator can be interpreted as the sum of the elemental modal
strain energies weighted by the elemental loss factors. In this manner, the modal loss factors
are apportioned according to the strain energy participation of the mode in each of the
materials. A diagonal modal damping matrix is obtained with non-zero elements

Cam = 2,nw, = -jg{f m} T [Ke'Jf Om} (7)
WM

Alternately, one can employ the definition of the system loss matrix, Equation 3, to obtain
an expression based on system rather than elemental quantities:

CMm = 2 (mw, = {m}T[K']{0m} (8)
Wm

The computation using the system loss matrix rather than elemental strain energies is often
simpler to perform in practice. It is instructional to view this modal damping matrix as the
projection of the loss matrix on the modal space with coupling terms discarded, and then
scaled by one power of frequency to reflect the additional time derivative applied to obtain
modal velocity from modal displacement. The frequency scale factor allows the loss per
cycle to be maintained for sinusoidal motions, assuming each mode responds only at its own
natural frequency. Given broad-band excitations and low to moderate levels of damping,
each mode will indeed respond primarily at its natural frequency.

When the structure is excited by a narrow-band input, it would be a better approximation
to scale the modal loss matrix by a single reference frequency. That reference frequency, fno,
is commonly chosen as the half-power frequency of the response power spectral density. This
option of computing an equivalent viscous damping matrix, by scaling the projection of the
loss matrix on the modal space by one user-defined reference frequency is available in many
major finite element codes, such as MSC/Nastran.

2.2 The Coupled MSE Technique

It is proposed here that the modal damping matrix be constructed on the basis of strain
energy participation without discarding coupling terms. This may be accomplished by pro-
jection on the modal space and application of a diagonal scaling transformation as shown
below:

[C] = B-][qT [ ] P- ,] (9)
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The diagonal terms which result from the CMSE damping model are identical to those of
Equation 7. Coupling terms are scaled by the square root of the product of the natural
frequencies of the two modes being coupled, i.e. their geometric mean, as proposed by
Rogers et. al. [2]. When modes are closely spaced, and hence coupling terms are important,
the geometric mean will be close to the two natural frequencies of interest.

The model is intended to be useful in cases where damping coupling is significant; where
the damping forces are considered to be structural, such that the energy loss per cycle
is generally independent of response frequency; and where the response is not at a single
frequency, disallowing the use of a single reference frequency to scale loss terms. In other
words, for want of any better knowledge, the modes are assumed to be responding primarily
at their own natural frequencies. The resulting coupled damping matrix will necessitate a
further eigen-solution to obtain complex modes if one wishes to diagonalize the equations of
motion. Otherwise, coupled solution techniques can be applied in frequency or time domain
solutions.

A physical damping matrix, [C], corresponding to the assumed modal damping matrix
may now be constructed. We desire a minimum norm matrix which satisfies the relation
1TC4 = c. Such a matrix may be found through application of the generalized inverse [5],
where # is defined as (@TI)-T. A computationally efficient substitute for the generalized
inverse of the eigenvector matrix for mass-normalized modes was proposed in Reference 6
to be 4TM. Applying this quasi-inverse to both sides of the above relation results in the
corresponding physical damping matrix

[C] = [M][t][c][4IT [MIT  (10)

4DTM satisfies all but one of the sufficient conditions set forth in [5]; N # is symmetric,

IpiTM is not. C derived from V will be the minimum 2-norm physical damping matrix
which provides the desired modal damping matrix. Its projection on truncated modes will
not be null. C derived 4TM provides the desired modal damping matrix and has null
projection on truncated modes. A comparison has shown that transient responses resulting
from use of the quasi-inverse vs. those resulting from use of the generalized inverse are within
.2 percent.

3 Transient Response Analysis

Having defined an appropriate modal damping matrix, the coupled modal equations of mo-
tion may easily be solved by direct integration. It is also possible to solve a complex eigen-
problem in the modal space to de-couple the equations prior to integration. If a small number
of modes are being used, the coupled integration will not be a computational burden. To
recover displacements a mode acceleration approach is more accurate than a mode displace-
ment approach. To do this requires the solution of the equations of equilibrium at each time
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step given the applied, inertial and viscous loads. The resultant physical displacements are

{x} [ [K]-' ({F} - [MI[]{if} -[cJ[o#})

S[K]-' ({F} - [M][D] ({ff} + [c]{r})) (11)

The second, simplified expression given above was obtained by post-multiplying Equation 10
by D, and taking advantage of mass-orthonormality to obtain C4 = MDc. By recovering
displacements in this manner, it is not necessary to actually compute a physical damping
matrix. The modal viscous loads are used to augment the modal inertial loads, avoiding
computation of physical viscous loads. An even more simple form may be found by manip-
ulating the expression for the real eigenproblem, Equation 4. This results in the following
simple expression for displacement response due to modal inertial loads [71:

[K]-'[MI[O1 = [D][w-2 (12)

Recovery of physical displacements is then obtained in terms of applied physical loads and
a summation of modal responses due to modal inertial and viscous loads:

{x} = [K-'{F} - [][W-2l ({J} + [c]{}) (13)

4 Frequency Response Example

Figure 1 shows a spacecraft truss appendage supporting an optical mount. Damped tripod
struts and base joint dampers are modeled with material loss factors. The tip is subjected
to a lateral sine wave frequency sweep from 10 Hz to 1000 Hz. This emulates a secondary
coolant disturbance. Rotations of the optical mount are monitored for the reference case
with coupled imaginary stiffness, Equation 1, and for CMSE and MSE equivalent damping.
These responses are shown in plots of response vs. excitation frequency in Figures 2a-2c.
The CMSE viscous equivalent case shown in Figure 2b is similar to the imaginary stiffness
case in Figure 2a for most the the frequency range. The difference in second mode peak
response is about 10 percent. The MSE viscous equivalent case shown in Figure 2c compares
well only at specific frequencies. The difference in second mode peak response between the
MSE case and the imaginary stiffness reference case is 350 percent.

5 Transient Response Example

Figure 3 shows a spacecraft with solar arrays cantilevered on booms. Active damping is
proposed to attenuate oscillations of the solar arrays due to spacecraft slew maneuvers. The
active damping is approximated by material loss factors applied to bending strain of the
booms. Boom loads recovered using displacements calculated by Equation 13 for CMSE
and MSE damping techniques are shown in Figures 4a and 4b. In this example peak boom
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bending loads are reduced by 20% when the CMSE technique is employed. A 10% increase in
positive peak loads is encountered when MSE damping forces are neglected in loads recovery.
This can be seen in Figure 4c. In this case neglecting damping forces in recovery improved

response as compared with the CMSE reference case, but this may not be true in general.

We conclude that in general additional error is incurred by neglecting large damping force

corrections in loads recovery.
A more significant result is the amplitude of free vibration after the slew maneuver. At

40 seconds, response in the CMSE case is an order of magnitude greater than response in

the MSE case. In this situation neglecting coupling terms in the damping matrix would lead

to large errors in prediction of post-slew spacecraft performance.
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6 Conclusions

The Coupled Modal Strain Energy technique allows one to build a physically reasonable
structural damping model without discarding modal coupling terms. Damping models in
both the modal and physical spaces were constructed. Modal coupling terms have previously
been shown to be important in the case of large damping and closely spaced modes. The
example presented confirms that the retention of modal coupling can have a significant effect
on transient response.
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ABSTRACT
The feasibility of using perturbation techniques to determine the effect of
added viscoelastic damping treatments on the modal properties of a system is
investigated. Linear perturbation equations for the changes introduced into
system eigenproperties are derived and applied to several examples involving
the flexural vibration of beams with varying degrees of damping treatment.
Both large and small perturbations are considered. Comparison of the results
with those obtained by direct solution of the corresponding complex eigenpro-
blem shows the procedure to be accurate. The perturbation approach described
can accommodate frequency-dependent material properties, and the procedures
involved are illustrated in an example. The perturbation approach appears to
be particularly well-suited for design situations where a number of damping
configurations must be investigated.
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INTRODUCTION

Addition of a viscoelastic damping treatment to a structure alters its mass
and stiffness and introduces damping effects. If these changes are relati-
vely small, addition of the damping material constitutes a small pertur-
bation to the existing structure. This raises the possibility of using
structural modification (perturbation) techniques1 -6 to analyze the effect of
added damping treatments.

Perturbation techniques have the advantage that the changes in the modal pro-
perties can be expressed entirely in terms of the eigenproperties of the ori-
ginal system and the changes in system mass and stiffness. In the case of
added damping treatments, this means that the natural frequencies, loss fac-
tors and mode shapes of the damned system can be obtained directly, without
the need to re-solve the eigenvalue problem. From a computational point of
view, this feature of the perturbation approach is highly attractive.
Viscoelastic damping treatments often lead to nonproportional damping, with
complex eigenvalues and eigenvectors. Solution of large-order complex eigen-
value problems is time consuming and costly. This is particularly true for
damping treatment design, w~iich may require consideration of a number of dif-
ferent damping configurations.

In this paper we explore the feasibility of using perturbation techniques to
determine the effects of added viscoelastic damping treatments. Attention is
restricted to free-layer treatments applied to systems whose vibratory
response is described by discretized equations of motion. The basic pertur-
bation equations are derived and applied to several examples involving the
flexural vibration of an elastic cantilever beam with varying degrees of
damping treatment over its length. This configuration was chosen because of
its simple geometry and because of the existence of other solutions with
which to compare the results of the perturbation approach.

Values of the natural frequencies, loss factors and mode shapes for the
damped beam are presented for varying degrees of damping treatment. These
results are shown to be in very good agreement with those obtained by direct
solution of the corresponding complex eigenvalue problem. Both small and
large perturbations are considered. Large perturbations are treated -as a
series of smaller changes. Results showing the rates of convergence of
this sequential approach are presented. Also presented are results showing
the optimum locations along the beam for placement of partial damping treat-
ments. Use of the perturbation approach to aL:ount for the frequency depen-
dence of the damping material properties also is discussed and illustrated in
an example problem.

GENERAL CONSIDERATIONS

Consider a conservative vibratory system with symmetric mass and stiffness
matrices [M] and [K]. The corresponding eigenvalue problem is of the form

7

Ai2 [M] { 1pI = [K] 14'i (1)
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2
where Ai is the elgenvalue for the ith mode of vibration and J4}j is the
corresponding elgenvector (mode shape). It is assumed that the system
eigenproperties are known.

Suppose, now, that a linearly viscoelastic damping treatment is added to the
system. Since Eq. (1) is expressed in the frequency domain, the complex
modulus is the proper representation for the properties of the damping
material. Consequently, addition of the damping treatment produces a real-
valued change [AM] in the mass matrix and a complex-valued change [AK(w)] in
stiffness. Since the properties of viscoelastic materials are frequency
dependent, the change in stiffness also depends upon the frequency, w.

These changes in the system parameters give rise to a new set of elgenvalues,

Ai2, and eigenvectors, li],:

Ai2  Ai2 + AA12 (2)

= + (3)

Except for simple structures with uniform damping treatments over the entire
surface, addition of viscoelastic layers usually gives rise to a system with
nonproportional damping. In this case, the eigenvectors are complex-vaTued
and the eigenvalues are of the form 7

A12 = w12 (1 + ini) (4)

Here, wi is the damped natural frequency and qi is the corresponding modal
loss factor for the system.

One possibility for determining the elgenvalues and elgenvectors of the
damped system is to re-solve Eq. (1) using [M+AM] and [K+AK(w)] as the mass
and stiffness matrices. This is not an attractive proposition for large
order systems, particularly if a number of different damping configurations
are to be investigated. Solution of large-order, complex-valued
elgenproblems is time consuming and costly.

Another possibility is to use approximate methods of an lysis, such as the
modal strain energy ipproach of Johnson and KVenholz o or the Rayleigh

Quotient approach of Stevens et a19. These approaches are relatively simple
to apply and give results that are useful in many situations. However, they
do not always provide all the information needed. The modal strain energy
approach is restricted to problems with proportional damping and provides
estimates only of the modal loss factors; the Rayleigh Quotient approach
gives estimates of both the loss factors and damped natural frequencies and
applies to arbitrary damping configurations. Both methods are based upon the
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mode shapes of the undamped system, and neither provides information about
changes in the mode shapes.

The alternative considered herein is to use linear perturbation techniques to
express the changes Ail and [A*1 in the etgenvalues and eigenvectors
directly in terms of the changes [AM] and [AK(w)] and the eigenproperties of
the original system. This approach has the obvious advantage that infor-
mation about all the eigenproperties can be obtained for a variety of damping
configurations, while the eigenproblem need be solved only once. It should
be noted that the process need not start with a mathematical model of a con-
servative system, as assumed in the preceding discussion. The original
system can be damped. Systems. whose natural frequencies and mode shapes are
obtained experimentally via modal testing techniques 7also can be handled,
provided an appropriate set of mode shapes is available.

There is one potential problem with the use of linear perturbation tech-
niques. The density of common damping materials is of the same order of
magnitude as common metals, so the changes in the mass matrix can be relati-
vely large. A higher-order perturbation theory10 could be used, but the
resulting equations are lengthy and the computations time consuming. The
alternative, used in this paper, is to treat large modifications as a series
of smaller ones. Changes in system stiffness usually are relatively small
and cause no particular difficulties. This is because the modulus of
damping materials typically in several orders of magnitude less than that of
the structure to which they are applied.

PERTURBATION EQUATIONS

First-order perturbation equations for the linear elgenvalue problem can be
derived in a variety of ways, and are available in various references 1-5 .
These derivations hold in the current case provided proper care is taken in
handling the change in stiffness, which is now complex-valued. Suffice it to
say that, for a system with distinct elgenvalues, the first-order approxima-
tions for the changes in the eigenproperties are:

1
AA 2 = - f{1iT [AK] - A1

2 [,&M] NOi (5)
Hi

and

n
A =,}t - alj tW}j (6)

Jul

where
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= 1
2 - Aj 2) 1j}T [AK] - Ai2 [AM] 1*11 (7)

Here the superscript T denotes a vector or matrix transpose, and M1 is the
modal mass:

Mi = [*]1T [M] j'pi (8)

Expressions for [AM] and [AK] are given in the following Section (for a
beam). Once these are known, the step-by-step procedure for applying the
perturbation equations is as follows:

1. Solve the elgenvalue problem, Eq. (1), for the system without damping
treatment. This gives A12 and{f'1, and is the starting point for the
modification steps.

2. Determine [AM] and [AK] for the damping treatment of interest. If
either change in relatively large, divide it into a member of smaller
changes.

3. Solve Eqs. (5) and (6) for an increment of [AK] and [AM]. This deter-

mines the changes in the modal parameters.

4. Update the modal parameters using Eqs. (2) and (3).

5. Repeat steps 2 through 4 until the desired modification [AM] and [AK)
is achieved.

6. Solve for the damped natural frequencies and modal loss factors using
Eq. (4).

Frequency dependent material properties can be handled in a similar way11.
First, the eigenproperties of the original system are determined using values
of the material properties at some convenient reference value of frequency.
The resulting values of the natural frequencies are then used to determine
updated values for the material properties and the corresponding changes In
stiffness [AK(w)]. Application of the perturbation equations then provides a
new estimate for the natural frequencies, and the process is repeated. This
iterative process is carried out mode-by-mode. Since the material properties
usually are slowly varying functions over the frequency interval of interest,
convergence is rapid.

Updating the mode shapes at each step of the perturbation process is a labor-
intensive operation. If the mode shapes are not updated at each step, I. e.,
if the mode shapes of the undamped structure are used throughout, the pertur-
bation method yields essentially the same results as the Rayleigh energy
approach 12-14. These approximate results may be accurate enough in many
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instances. If so, the costly mode shape updating process can be avoided.
For damping treatment configurations that result in propcrtional damping, the
mode shapes are the same as those of the undamped structure7 . Updating of
the mode shapes is not required in this case.

It also is possible to minimize the calculations needed to update the mode
shapes. As can be seen from Eqs. (6) and (7), aij will be small for those
modes for which the values of li-Ji is large. Thus, these modes contribute
little to the mode shape changes and can be ignored in the updating process.
This feature of updating only certain mode shapes is useful, especially for
large system models. Use of the perturbation approach with condensed dynamic
system models is not considered in this paper.

APPLICATIONS TO A BEAM

In this section, the perturbation approach described is applied to four
examples involving the flexural vibration of an elastic cantilever beam with
varying lengths of viscoelastic damping treatment on one side (Figure 1).
These examples also illustrate the capabilities of the perturbation approach.
The computations are based upon a finite element model of the beam, which
will be discusscd in more detail later. Expressions for the incremental mass
and stiffness matrices [AM] and [AK] are given in the Appendix, and the
dimensions and material properties used in the examples are listed in Table
1. Except where noted, all examples are for an aluminum beam with a
commercially-available damping layer. Computer programs were written to per-
form the necessary computations.

Example 1: Accuracy of the Method

The objective of this example was to assess the accuracy of the perturbation
equations. To this end, they were used to compute the damped natural fre-
quencies and modal loss factors for a beam with damping treatments ranging in
length from x/L = 0 to x/L - 1 and with thickness ratios tv/t - 0.2, 0.6 and
1.0 (see Figure 1). Here, and in the following, the subscript V denotes the
viscoelastic damping layer. The perturbations were carried out in ten, fif-
teen or thirty equal-sized increments, depending upon the thickness ratio,
and the material properties were assumed to be Independent of frequency.

In order to provide a hasis of comparison for the perturbation solutions, the
complex eigenvalue problem associated with the finite element model was
solved directly using the IMSL subroutine EIGZC. The finite element model
was verified by comparing results for the damped natural frequencies and
modal loss factors for different numbers of elements. Results for an
undamped beam also were compared with theoretical values of the natural fre-
quencies and mode shapes. It was found that the use of ten elements gave
very accurate results for the first five modes, with a variety of damping
treatment lengths and thicknesses. Validation of the finite element model
was essential because the main purpose of this example was to establish the
accuracy of the perturbation method. Significant finite element discretiza-
tion errors would have confused the issue.

The natural frequencies and loss factors of the damped beam for the first and
second modes are presented in Figures (2) and (3). These results are indica-
tive of those for all the lower flexural modes. In these figures, wo Is the
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natural frequency of the undamped beam and FEM refers to finite element
results obtained by direct solution of the complex elgenvalue problem. As
mentioned previously, these results were validated carefully and can be con-
sidered to be "exact". As can be seen, the perturbation approach gives
excellent results; they are indiscernible from the finite element solutions.
Shear effects may be important for the thicker damping layers considered, but
were neglected in this investigation.

Example 2: Rate of Convergence

Relative errors in the perturbation solutions for the damped natural frequen-
cies and modal loss factors can be expressed as

I wp - wfem

ew = (9)
wfem

TIp - 11fem

en = (10)
Ti fern

Here, the subscript p refers to the perturbation solution and fem denotes
finite element results. These errors depend upon the step size used in the
perturbation solution, or, alternatively, upon the number of steps used to
implement the total perturbation.

Figure (4) shows the variation of ew and en with the number of perturbation
steps for the first mode. The total modification was a complete damping
treatment with thickness ratio tv/t = 1.0, which corresponds to a 21%
increase in element mass. Again, the material properties were assumed to be
frequency independent. The eigenvalues, elgenvectors, and modal mass were
updated at each step.

For the particular case considered, the relative error in the loss factor is
always greater than the error in the damped natural frequency. As can be
seen from Figure (4), convergence is relatively rapid. With ten steps, the
error in the loss factor is approximately 2%, while the error in the damped
natural frequency is about 0.05%. Almost identical results were obtained for
the first five flexural modes. Although the results are not presented here,
the eigenvectors also were found to converge rapidly.

Example 3 Partial Damping Treatment,

This example was designed to illustrate the effect of the location of a par-
tial damping treatment along the length of the beam. The beam was divided
into thirty elements of equal length, and the damping material was added to
one element at a time. The thickness ratio was tv/t = 0.6, and the modifica-
tion was carried out in ten steps. As before, the material properties were
assumed to be frequency independent.

Figure (5) shows the results for the first and second modes. As can
be seen, the highest loss factors are achieved when the damping material is
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placed at the nodes of the undamped member. The natural frequencies decrease
the most when the damping layer is located at the anti-nodes (results not
shown here). These results are as expected. At the nodes, bending strains
in the viscoelastic coating are maximum. Thus, damping material located near
the nodes is most effective. Placing it at the anti-nodes dissipates little
energy, but adds mass to the system and lowers the damped natural frequency.

Example 4 Frequency Dependent Material Properties

To illustrate the capability to handle frequency dependent material proper-
ties, Example 1 was repeated (for tv/t = 1) using the hypothetical material
properties shown in Figures (6) and (7). Note that damping in the aluminum
beam is now included. The dashed curves indicate the assumed variation in
the material properties, while the solid lines define the reference values
used in the initial calculations. The frequency dependence has been
exaggerated so that its effect can be more readily observed.

Figure (8) shows the system loss factors for the first two modes. The per-
turbation solutions account for the frequency dependence of the material pro-
perties, while the finite element results do not. They are based upon the
reference values of the material properties. Effects of the frequency depen-
dence on the system natural frequencies were negligible for this example.

CONCLUDING REMARKS

First-order matrix perturbation methods can be an efficient means for pre-
dicting the dynamic characteristics of modified structural systems.
Viscoelastic coating modifications are particularly suitable for this tech-
nique. The modifications need not be small, but, if they are not, they must
be built up by a series of small modification steps. Because this technique
works with discretized systems, it can be applied to structures of general
shape and can be implemented along with finite element codes.

The first-order stepwise perturbation technique used in this investigation
gave close approximations to the damped natural frequencies and loss factors
for a beam with various configurations of complete and partial damping treat-
ments. Relative errors in the loss factors were found to be greater than
those in the damped natural frequencies. If the mode shapes are not updated
at each modification step, the perturbation solution produces an approxim -
tion which is comparable to that of the Rayleigh energy approachl.
Application to problems with frequency-dependent material properties was
described and illustrated in an example problem. These same procedures also
can be used for material properties that are temperature dependent.

An important factor not addressed in this paper is the question of the effi-
ciency of the perturbation approach. Does it require more or less com-
putational effort than a re-solution of the complex eigenvalue problem? The
answer to this question depends very much upon the algorithms used to imple-
ment the perturbation equations. For example, for partial damping treatments
covering only a small portion of a structure, the incremental mass and stiff-
ness matrices consist almost entirely of zero elements. Computational time
can be reduced by taking advantage of such facts. For small modifications
requiring only a single solution step, the perturbation technique appears to
be very effective.
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TABLE 1. PROPERTIES FOR BEAM EXAMPLE

Beam E = 70 x 109 N/m2
A(A-l-umi num)

p = 2.7 x 103 kg/m 3

Damping Layer Ev = 0.69 x 109 N/m2
(Commercially

Available) nv = 0.64

Pv = 0.58 x 103 kg/m 3
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APPENDIX-BEAM EQUATIONS

Consider an elastic cantilever beam with thickness t, flexure rigidity El,
length L and elastic modulus E, with a viscoelastic damping layer of
thickness tv bonded to it over a portion of its length (Figure 1). The pro-
perties of the damping layer are described by the complex modulus

E* = Ev (1+inv) (Al)

where Ev is the storage modulus and nv is the material loss factor. Here,
and in the following, the subscript v denotes the viscoelastic damping
material.

Addition of a damping layer to one side of a beam causes a shift in the
neutral axis of the cross-section. Using simple beam theory, this shift can
be shown to be

Et(l+t)

= y*/t = (A2)

2(l+Et)

where y* is the distance between the neutral axis of the composite cross
section and the midplane of the beam and

E Ev/E t = tv/t (A3)

Note that . usually is small, since E is typically small, and often can be
neglected.

The mass and stiffness matrices for a beam element are available in the
literature1

5 :

12 6a -12 6a
E [ r,_2 -6a 2a 2

[K] a3 %.1. 2 -6a k [K] (A4)
a3  [SYM -. 4a
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156 22a 54 -13

pAta 4a2  13a -3a(
[M] = %.,156 -22 =m [M] (A5)420 LSYM *- - 4aZ

Here, p is the mass density, A is the cross-sectional area and a is the ele-
ment length.

The incremental mass matrix [AM] due to the viscoelastic layer is given by
Eq. (A5) with the beam dimensions and properties replaced by those of the
layer. The incremental stiffness matrix is given by Eq. (A4), except with k
replaced by kv. Using standard finite element procedures and simple beam
theory (shear effects neglected), it can be shown that

EI [E 1 - - 2
kv u- I + + 12t [ (1+t) - ]2 (A6)

where

I = Iv/I (A7)
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DAMPING AND VIATION CONTRL OF SCME LVMATD CO TrE BEAMS
USING ADD-ON VTSCOEASTIC TEIALS

V. S. Rao, C. T. Sun and B. V. Sankar
Dpartment of Aerospace Engineering, Mechanics

and Engineering Science
University of Florida

Gainesville, Florida 32611

ABSTRACT

Ths paper describes the development of a finite element model for
laminated beams treated by a constrained viscoelastic layer. The finite
element model is designed so as to represent the viscoelastic core shear
accurately. An offset-beam element is developed that is specially suited for
modellin such laminated beams. Element matrices are derived starting with an
assumed displacement field and stress-strain relations. System danping and
tip displacement are calculated analytically, and compared with those measured
experimentally using the impulse-frequency response technique. Results show
that dynamic response is significantly improved by use of such damping
treatments.

* This work is sponsored by the Army Research Office,
monitored by Dr. Gary L. Anderson under contract No.
DAALO3-88-K0013.
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Introduction

The increasing use of constrained viscoelastic materials in numerous
dynamic applications have motivated the authors to develop an accurate and
efficient method to estimate damping in such structures. 1  Considerable work
has been done in the past few years to analyze constrained viscoelastic layer
dampin g. Early work in the field can be found in Ross, Ungar and Kerwin's
work. 2 Plunkett and Lee discussed the optimization of constrained
viscoelastic layer damping for beams. 3 The analysis assumes that the
tr atment is always symmetric and that the base structure is perfectly
elastic. While this is reasonable for metals, fiber reinforced plastics are
known to have much higher loss factors.

More recently, finite element techniques have been used to address this
problem. 4 ,5, 6 Most of the work done so far is on damping treatment applied to
metals. Advanced fiber reinforced ccmposites are prime cardidates for several
interes applications where damping is a key parameter. Iprvement of
damping characteristics of these materials make them even more attractive.
Since most composite structural elements in military and space applications
are subject to severe dynamic environments, further vibration control becomes
extremely necessary. Ths can be achieved by using damping treatments.

High damping in a structure can often improve performance in a dynamic
load environment. Efficient methods for predicting damping from a strucbure
are required, so that means of increasing damping by design can be explored.
Johnson et al. and Brockman discuss some of the finite element modeling
techniques that are currently popular for modeling structures containing
viscoelastic materials. 7 , 8

Mi of the proble in analyzing damping in structures is due to
complicated geometries; it is therefore natural to look to finite element
solutions. The method considered here makes use of the correspondence
principle of viscoelasticity. When applied stresses are not too large, the
composite and its constituent materials exhibit linear viscoelastic behavior.
For such materials, due to the correspcrx ence principle, the Youngs modulus
and shear modulus can be treated as ccmplex qualities. The real part is
called the storage modulus and the imaginary part the loss modulus.

Me direct frequency response technique was used for the analytical
estimation of damping and tip displacement. Exeriental measurement of
damping was done using the impulse-frequency response technique. In ccuposite
base structures, several factors influence system response. For example, the
stacking sequence in the base structure, and the location, amount and type of
treatment influence the response strongly. Parametric studies, at best, lead
to locally optimal solutions; while no formal optimization was done, results
show the potential for optimization.

Finite Element Analysis.

The finite element method was used to evaluate damping in the structure
for different lengths of treatment of the constrained viscoelastic layer.
Figure 1 shows the arrangement used for modeling the three layer sandwich.
The base structure and constraining layer were modeled using a specially
developed three-node, seven-degree-of-fred a, offset beam element. A key
feature of this element is its ability to account for coupling between
stret and bexing deformations. This allows for the beam nodes to be
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offset to one surface of the beam, coincident with the nodes of the adjoining
element. The viscoelastic core is modeled using a rectangular plane stress
element that is compatible with the offset beam element.

1 Sin (wt)

Figure 1: Typical Finite Element Mesh

Offset Beam Elem~t

The element stiffness matrix for the offset beam element shown in Fig. 2
is formilated as follows. The different displacement camronents are given by,

u(x,y) = U (x) + (z - 1
w(x,y) = w(x) (1)

# (x,y) = 0 (x)

u, and 0 are defined using linear interpolation functions.

1uo  x ) - C (1-X/, ) X/r,] 3u 11 1 ]T (2a

*i(X) - [((l_/, X,,] (u 2* ]T I2a

Qhe9re, 1P%4, 4 , lo andl 14 are CCres= dr noal dipamt.w is defined
using adratic lati functions.
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2X2Wf (1_3x/4. + Ur) T •

(2-C- 2E(2b)

Strains are derived fr the isaem using the kinematic strain-
dislacmen reatinsof linear elasticity.

ax ax ax

Lau +aLw-= 0+aw (3)
7,x = Z 8X axx

Testrain energy density for the syte is given by

2+ 2

C t and qs are cdrtants fr the constitutive equations. Te total strain
energy for the system is given by

L. h/

/2

u0 ul 0~~e J.r(2 2(4

Using equations (2), (3), (4) and (5), the strain energy of the system is

reduced to,

U. 2 (d.)T (K,] (d}

where,

(d,) - vector of elemental D.O.F.

(K, ] - elnmmt stiffness mtrix

The clculations involved are lengthy, hit straight forward and are not
presented here. he mass matrix is evaluated similarly fr the
kinetic energy of the system.
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Figure 2: Offset Bean Element

ModelinM and Solution Techniue

As mentioned before the base structure was modeled using the three-node
shear-deformable beam element. Typically, twenty elements are used to model
the beam. Very large aspect ratios are caeon for elements used to model the
viscoelastic core. Values as high as 5000 to 1 have been used successfully,
and are sometimes even necessary, since the viscoelastic core is only two mils
thick. 7 Aspect ratios up to 200 to I were used in the present study. To
validate this formulation, several calculations were made to determine natural
frequencies arxi tip displacement of simple systems, closed form solutions to
which are easily derived.

The loss factor was evaluated using the direct frequency response
technique. In this method, a forced vibration at a known frequency is
considered. System displacements are obtained by solving a system of ccuplex-
valued linear equations. The frequency response spectrum is obtained by
plotting amplitudes over a range of frequencies. The loss factor, a measure
of damping, is obtained fro the real part-of the response. Mhs technique,
though not the most efficient, was used for two reasons, simplicity and the
relative small size of the problem in question.

7he modeling method used is reasonably efficient. A three layer
structure is modeled using only two layers of nodes. This technique can be
easily extwxded to two-dmensional problems. However, alternative methods for
dztermi system loss factor will have to be used as the problem size
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Exermental Prcedre

The mst cc n methods used to measure dampr are the free vibration
decay method, the resonant dwell method, the hysteresis loop method and the
f-c-ncy-res=c-se tec-hniue. For the purpose of this research the imulse-
freuency respcnse technique was used. 9  This technique offers potential for
rapid no- ctive evaluation of materials and strucures.

in the iuxse-f yenc response technique, the specimn is excited
impulsively with a controlled-impact haer which has a force transcb
attached to its head. The specimen response is sensed by a non-contacting
eddy current, proity probe. The signals fra the force t-ans&aer and the
motion transducer are fed to a Fast Fourier Transfo= (FFM) analyzer which
displays the frequency spectrum. A block diagram of the instruntation is
shcwn in Figure 3. By analyzing the resonant peaks for a particular mode, the
loss factor, a measure of damping, is obtained frm the real part of the
reponse specm as explained in Fig. 4. In this researd the imrov
tecnique was used. 9 Scme of the features of this imroved technique are the
excitation level is accurately controlled, therefore, the amplitude of
vibratin of the specimen can be rahuced to a minis (thereby re&=iM air
damping to a minm). Also, the response function, which is identical in
shape to the transfer function after ensemble averaging, can be used for
damping measrmwnts. 9

ErHammer
Force Transducer

I I PC3 2CS A=

Edy currnt prcbe-.-.-.j
Displacement -4 /'

Messurfnq
System ..-

Kaman KO-24C0 ranllfcir
Rs~as AmplIffer

Exc signal 
PC Z 40 A

Analyzer tlNP ,5420 A.j' ' ""';'

Figure 6: Variation of Loss Factor with Tape Length (Mode I)
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Results and Discussion

The material properties of Glass-Epoxy and the soft aluminum constraining
layer are given in Table I. The damping material used was 3M's SI2052x, a
class of constrained viscoelastic damping tape. The shear rdulus and loss
factor of the damping material, as a function of temperature and frequency are
provided by the manufacturers.

Table - I Material Properties

Glass-epoxy composites (0c)

p EL FT GLT
Vf g/cn3 GP GPa GPa V LT L '7T

0.50 1.90 38 8.80 3.0 0.28 0.0033 0.01

Constraining layer: - Type 1100 Dead Soft Aluminum.

p E G VI

2.76 g/cm3 69 GPa 26 GPa 0.32 0.005

Structural damping with and without (taped and untaped) the add-on
viscoelastic layer are evaluated experimentally, and analytically using finite
element analysis. Results of the effects of different parameters such as, the
quantity of treatment, location of treatment and the thickness of the damping
material on the overall damping of the system are presented. Stacking
sequences of the three different laminates analyzed, specimen dimensions,
measured loss factors of the untaped beam and first and second mode resonant
frequencies are given in Table II.

Table II - Laminates Tested**

laminate length thickness frequency (Hz) loss factor
(M) (mm) Mode I Mode II Mode I Mode 37

[0/9 0 14s 20.32 3.57 54.1 339.7 0.00291 0.00282

[0/90/00/ 9012s 20.32 3.68 49.4 309.3 0.00382 0.00346

(90/90/0/9012s  20.32 3.61 41.2 258.2 0.00428 0.00422

Figure 5 shows the real and imaginary parts, and magnitude of the
eonse as a ftction of the frequency of the forced vibration for three

different lengths of treatment. Corresponding stru r loss factors

** Three specimens tested in each case.
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evaluated from the finite element analysis is also shown. The change in
system response due to addition of the viscoelastic material can be seen fr a
the figure. Displacement is plotted in meters, per Newton of applied force.
Large reductions in response amplitude can be seen due to application of the
danping tape.

Figure 6 shows the variation of loss factor with tape length for the
three different laminates for mode 1. Loss factor ratio is the ratio of the
loss factor of the taped beam to the measured loss factor of the untaped beam
(value in Table II). In each case the loss factor increases rapidly from

b/L= to b/L=0.4, after which it shows a slight drop and then remains steady.
The existence of a tape length, b, for which b/L<l and damping is maximized is
significant. This result confirms our previous belief that shear deformation
of the viscoelastic core is the primary source for energy dissipation. For
lengths greater than the optimal value, the deformation of the viscoelastic
core follows the extensional deformation of the surface of the beam.

Similar results are presented in Fig. 7 for vibration in the second mode.
The trend observed here is different from that for mode 1. Mile treatment
closer to the root of the beam seems to have the greatest effect on mode 1,
the center of the beam seems to be the optimal location for mode 2. Figure 8
presents the experimental results for the [0/9014 s laminate. The treds
observed are identical to those suggested by analytical results for mode 1.
However, for b/L>0.4 experimental results are consistently higher than
analytical predictions. Mode II results show excellent agreement with
analytical predictions.

28 -*-b-i MODE II-[o/9014S
024- --- [0190/90/90] 2S

--- [90/900101 2S

20-

016

12-
-

S'-

3 Base Structure: Glass Epoxy

4 Damping Tape: 3M's SJ-2052X
0 0

0 0.2 0.4 0.6 0.8 1
TAPE LENGTH / BEAM LENGTH

Figure 6: Variation of Loss Factor with Tape Length (Mode I)
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The variation of loss factor ratio with tape length for different
thicknesses of the damping material is shown in Fig. 9. The results suggest
that for a given thickness of the constraining layer there exists an optimal
thickness of the viscoelastic damping material (about 0.127 mm for a
constraining layer thickness of 0.254 m=) for which greatest damping can be
achieved. The variation of amplitude ratio with tape length is given in Fig.
10. Amplitude ratio is the ratio of the maximm tip displacement of the taped
beam to that of the untaped beam. For each of the three laminates the
vibration amplitude is seen to reduce dramatically with increasing damping.

28 - b MODE 2
0.a- -[0/9014 S

---- _[o/ 90190112s
--- [90/900/0] 2S2 0

016-

< 12-
LZL

cn,

.. -Base Structure: Glass Epoxy
4 -Damping Tape: 3M's SJ-2052X

0 0.2 0.4 0.6 0.8 1
TAPE LENGTH I BEAM LENGTH

Figure 7: Variation of Loss Factor with Tape Length (Mode II)
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Figure 8: Variation of Loss Factor with Tape Length
(Experimental Results)
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Figure 9: Variation of Loss Factor with Tape Length for
Different Damping Layer Thicknesses
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Concludi' Remarks

Based on the numerical and experimental results presented, it is
concluded that viscoelastic surface layer treatments can be used to
significantly improve the dynamic response of structures. Increases in
overall system damping and large reductions in response amplitudes are
achieved using damping treatment. Results also show, for each mode of
vibration, there exists a length, location and a thickness of the damping
tape, for a given thickness of the constraining layer, for which the overall
system damping is maximized.

In future the work will be extended to acccmmodate the effects of
continuous variation in cross section, (this is already possible with a little
modification) pre-stress, initial twisting and rotation on the system
response.
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CLASSIFICATION IN THE FREQUENCY-TEMPERATURE
RANGE OF VISCOELASTIC MATERIALS FOR DAMPING

OF FLEXURAL WAVES IN SANDWICH STRUCTURES
WITH VARIOUS BOUNDARY CONDITIONS.

Dr. Marie-Jos~phe GHALEB 1 and Mona KHOURY
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Damping of flexural waves by constrained or unconstrained viscoelastic layers is conside-

red in order to classify the viscoelastic materials according to their efficiency for given ranges of

temperature and frequency. The loss factor is computed for structures of various geometries,

such as beams, plates and tubes, with various materials of the constraining layers, such as steel,

aluminum, fiber glass composite. The influence of boundary conditions is studied. The curves

corresponding to particular loss factors are plotted in the frequency - temperature plane for a gi-

ven structure, so that the efficiency of the damping treatment may be evaluated immediately for

each range of temperature or frequency. A classification between different materials can then be

made . An experiment giving the modes and the corresponding loss factors of free sandwich

plates is presented.

1 External consulting engineer for CERDAN.

PRINCIPIA - Place Sophie Laffitte- BP 22 - 06561 - Valbonne Cedex - FRANCE
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INTRODUCTION

The damping of flexural vibrations by the mean of viscoelastic materials is a classic method
involving different techniques such as extensional damping by unconstrained layers, and
shear damping by constrained layers. The resulting loss factor for an elementary structure
such as a beam, a plate or a tube, is given by well-known theories (Oberst, Ruzicka and Ker-
win). However, one of the user's problems is the choice of the different added layers : the vis-
coelastic material and, eventually, the material of the constraining layer, and their dimen-
sions.

This paper presents a method of classification of viscoelastic materials, based on their
intrinsic loss factor or on the composite loss factor of damped structures in which they are in-
volved. The principal results are curves representing a given loss factor in the temperature-
frequency plane, so that the user can immediately evaluate the damping's efficiency in the
ranges of temperature and frequency he is interested in. It is also possible to plot the loss fac-
tor of a composite structure versus the frequency (or the temperature) for given temperatures
(or given frequencies), or versus different thickness ratios for given temperatures and fre-
quencies.

The combination of all these possibilities helps to find the best viscoelastic material, and
eventually the constraining material, and to optimize the thickness of each layer.

The utilization of the method will be illustrated with some examples of damping by five
different viscoelastic materials.

INTRINSIC DAMPING.

Characterization of a viscoelastic material.

Under linear conditions, the complex modulus is a classic way to characterize the be-
havior of a viscoelastic material . The stress-strain relation can be written:

a = E (f,T) (1+i3 (fT)) c

where f is the frequency, T is the temperature, and E, P are respectively the Young's modu-
lus and the loss factor of the material.

The complex modulus E(l +i3 ) is provided by experimental data giving the variations of E

and f0 with temperature and frequency . Usually, there is an equivalence between temperature
and frequency effects, so that the separate variables f and T can be combined in a single vari-
able faxT called the reduced frequency , where the 'shift factor' aT is a non-dimensional par-

ameter depending only on temperature. The Young's modulus E (or the shear modulus
G=E/3 ) and the loss factor are then given ,in function of the reduced frequency, by the 'mas-
ter curves' which characterize each viscoelastic material . Figures 1 and 2 show the master
curves of two viscoelastic materials : MI and M4.
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Classification of viscoelastic materials according to their intrinsic loss factor.

One way of comparing the efficiencies of different viscoelastic materials is to look for
the frequency intervals where their loss factor is greater than a certain value, for the tempera-

tures one is interested in.Table 1 shows the frequency intervals where f5 >0.5 for five mate-
rials: M1 to M5, and for three temperatures. This method gives a first indication about the
best materials available for given temperatures and frequencies.

In order to avoid tedious manipulations, the master curves of the viscoelastic materials

have been stocked in a library ; the user can then compute E and P3 for each value of f and T
by the mean of a simplc program using the following method : it first computes the shift fac-

tor mT,then the reduced frequency faT, and finally E and 3 .The user can obtain more global

results than the table above by plotting E and 03 versus frequency (or temperature) for the
temperatures (or the frequencies) he is interested in. However, if he wants to have a general
view of the efficiency of the material in order to make a first selection, the most appropriate

method consists in plotting the curves corresponding to different values of P3 in the (fT)

plane. These curves are obtained by a program which computes 0 for several values of f and

T, and then plots contour lines corresponding to the desired values of 03. In order to have re-
liable results, one should consider a great number of points in f and T, and make regular sub-
divisions in log(f) and T. Figures 3 and 4 show the curves obtained for M1 and M4 for
10 Hz < f <10000 Hz and 00C< T < 60C . A comparison with the results of Table 1 or the
master graphs shows that the curves give quite good results if we take into account the impre-
cision on the master graphs.

The different types of viscoelastic damping treatments.

There are two types of viscoelastic damping treatments:

-the extensional damping ( by unconstrained layer ), in which the extensional deformation of
the damping layer accounts for the damping

-the shear damping ( by constrained layer , in which the energy losses due to shear motions
are dominant.

We will study these two types of treatments with one viscoelastic layer and for elementary
structures such as beams, plates, and tubes.

EXTENSIONAL DAMPING.

This method consists in adding a viscoelastic layer of Young's modulus Ev(1 +j13 ) to the base

structure (Figure 5).
The loss factor of the composite structure in the case of a damped beam or plate is given by

[1,2,3]
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I-eh(3+6h+4h 2 +2eh3 +e2 h4 )

'1=

(l+eh) (1 +4eh+6eh2 +4eh3 +e2 h4 )

H, , Hv : Thicknesses of the layers

e=Ev/El

h=Hv/Hl

eh = Ev Hv / El H, : Ratio of the extensional stiffnesses of the two layers

In most practical cases, eh << 1.

For a damped tube, the loss factor is:

p3Ev(R 3
4 -R2

4 )

11-
E 1 (R24"R 14) + Ev(R3 4 .R 2 4 )

with R1 , R2 : Internal and external radii of the initial tube
R3  : External radius of the damped tube

For the beam or plate as well as for the tube, the composite loss factor increases with the
intrinsic loss factor, the Young's modulus and the thickness of the viscoelastic layer. The
best materials for extensional damping are then those which have the greatest loss factor and
extensional stiffness. Increasing the thickness of the viscoelastic layer improves the efficien-
cy of the treatment, however there is a limit above which the damping tends to saturate and
even to decrease.
For example, the material M4 is better than MI for extensional damping (Table 1, Figures 3
and 4). In fact, M4 and M5 are used for extensional damping, whereas M1,M2 and M3 are
used for shear damping.
Figures 6 and 7 show the curves ri (f,T) for a beam damped by M4 and M5. By comparing
them, one can deduce that:
- M4 is less efficient than M5 for high temperatures and low frequencies, and more efficient
for low temperatures and high frequencies
- M4 is more efficient than M5 for intermediate temperatures and frequencies
More precise results can be obtained by superimposing the figures 6 and 7 ). The best materi-
al for the particular case considered is then deduced immediately for each range of tempera-
ture and frequency.

The influence of H v can also be studied by plotting the curves il( HFv/H 1 ) for given val-
ues of f and T (Figures 8 and 9).
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SHEAR DAMPING.

This treatment, which has been considered by many authors [ 1,2,4], consists in applying a
constrained viscoelastic layer (Figures 10 and 11) . Ruzicka and Kerwin [4] have provided a
simplified theory with the following assumptions:
-The considered modes are sinusoidal (simply supported structure)
-The effects of the boundary constraints are negligible
-Shear and torsional distorsions of the elastic elements are negligible
-The dimensions of the different cross-sections remain constant
-There is contact without slippage at all the interfaces
-The stress-strain relations are linear in all the layers
-The axial inertial forces are negligible
-The elastic elements have zero extensional and shear loss factors
-The elastic elements are considerably stiffer in extension than the viscoelastic material
-The viscoelastic material is thin and of approximately constant thickness

The loss factor of the composite structure is :

3XY
el= 1 + X(Y+2) + (l+132 )X2(Y+l)

with J3 : Intrinsic loss factor of the viscoelastic material
X: Shear parameter
Y: Geometrical parameter

The intrinsic loss factor is deduced of the master graphs. It depends on the frequency and
thetemperature : 03 (fT).

The geometrical parameter Y is defined as

Y = {(EI)* / (EI)o 1

where (EI)0 (resp. (EI)**) is the flexural rigidity of the composite structure when the elastic
elements are completely uncoupled (resp. coupled) . Another expression for Y is:

M A1 A2 d2
Y =

(A1 + MA2)(1 + M12)

with M = E2/E1

A1,2 : Cross sections of the elastic elements
11,2 : Moments of inertia of the elastic elements
d : Distance between the neutral planes of the elastic elements

More generally, Y = Y0 x (Y/Y 0 )
where Y0 is a function of dimension ratios and ratios of Young's moduli of the elastic layers

Y/Y 0 is a correction factor representing the influence of the viscoelastic layer
YO = Y(Hv = 0)
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The expressions of Y for a beam, a plate or a tube are given with figures 10 and 11;
The shear parameter for the mode n is given by

Gv Bv d02

Xn=
Pn 2 Hv Y0 (EI)0

where G'v, Bv and Hv are respectively the shear modulus, the mean length and the thick
ness of the viscoelastic layer
do is the distance between the neutral planes of the elastic elements when Hv =0

Pn is the wave number
The frequency of the mode n for the beam or the tube is:

a2 n (EI)n

2n2 m

where (EI)n is the flexural rigidity of the composite structure
m is its mass per unit length
L is its length
an is a coefficient depending on the boundary conditions

For a simply supported structure, the modes are sinusoidal; the wave length is related to L
by:

2L

n

and an =n

The wave number Pn is then given by:

pn ,_( _ 2n

If we suppose that (E) n is the real part of the complex rigidity (EI)n*[4], then

Xn

(El)n = Re (EI)n* = (E) 0 Re (1+ - Y)
1I+Xn

with Xn* = Xn (1 - iN)
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If we introduce the 'coupling parameter':

Xn(l+ Xn) + Xn25n2

Zn=

(l+Xn 2 ) + Xn2Pn2

the flexural rigidity can also be written:

(EI)n = (EI)0 (1+ZnY)
Then the shear parameter for the mode n is:

G v Bv do 2  G'v Bv d0
2  l+ZnY

Xn = 
--

2 fn m Hv YO(EI)O 2nf Hv YOF-- 0
(E I) n

(the expressions of (EI)0 and do are given with figures 10 and 11)

For a given frequency, Xn and Zn are obtained by an iterative method, then the loss factor is
deduced.

If we consider a motion in one direction, the formulation is the same for a plate,with
analogous expressions for the wave number and the frequency (Table 2).

In order to compare the effects of different constraining layers, the curves TI(fT) have
been plotted for a steel beam damped by M 1, and constrained by steel, aluminium or fiber
glass layers introducing the same added mass (Figures 12,13,14). It appears that in this case,
the most efficient material is aluminium, which can provide a loss factor of 0.2. However,
this is a global conclusion, and another material can be more efficient for particular values of
temperature and frequency.

The influence of the viscoelastic material can be studied by considering the steel beam
damped by M1, M2 or M3, with the same constraining layer, for example steel (Figures 12,
15 and 16). It appears that, globally, the most efficient material is MI, which can provide a
loss factor of 0.15.

Influence of boundary conditions (free structure)

In the case of a free structure, the modes are no more sinusoidal, so that the theory is not
valid. However, analogous relations for fn and an may be used [5], knowing that the expres-
sion for an is not valid for the first five modes . If one is interested in the value of the fre-
quency , independantly of the modal analysis, the loss factor is the same as for the simply
supported plate.
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EXPERIMENT

Modal damping measurements have been made on steel plates damped by constrained
viscoelastic layers (with steel constraining layers ) . The plates were free and excited by a
hammer. The measurements were made in five different points, and a modal analysis has
given the modal frequencies as well as the corresponding loss factors . In the frequency ran
ge of measurement, a few flexural modes were identified. We plotted he experimental and
theoretical values of the loss factors on the same curves (Figures 17 and 18). We can see that
the experimental values are a little lower than the theoretical ones. However, the agreement
between experiment and theory remains quite acceptable.

CONCLUSION

We have developed a program based on well-known theories and which can be of great
help for the designer of damping devices with viscoelastic layers. It allows the user to visual-
ize immediately the efficiency of damping treatments and then to choose the most appropri-
ate . It offers different possibilities such as:
- extensional or shear damping
- beams, plates or tubes
- various viscoelastic layers, which master curves are stocked in a library
- various constraining layers, such as steel, aluminium, fiber glass composite
with different thicknesses of the added layers.

However, one has to make many tries before finding the best damping device. The pro-
gram needs to be extended to an optimization program which would give the best materials
with the appropriate dimensions for a given structure to damp.

JAB - 8



M1 M2 M3 M4 M5

T=00 C 1 1 1

1740 1000 10000

T=20'C 6 20 20 1 1

10000 10000 10000 600 40

T=40C 300 250 3 15

10000 10000 10000 3000

Table 1 - Frequency intervals (between 10 Hz and 10000 Hz) where the intrinsic loss factor is
greater than 0,5 for the viscoelastic materials considered (MI to M5 ).

FREQUENCY OF SIMPLY FREE (n>5)

THE MODE n SUPPORTED
an2 ) an=n =t a=(2n-i-1)

BEAM/TUBE -,=/ m=I[-,tn -- 9 x_ -- 2L. -

PLATE '2 (2n-- 1) 7tai [ an -- nTci: aEn--"=

(motion along one n_ 2 --

direction) 27tL m x. :2r__.4-

L :Length

m Mass per unit length / surface

(EI)n Flexural rigidity of the beam or the tube

Dn :Flexural rigidity of the plate

Table 2
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Damp-Ing material
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Undef armed structure Deformed structure

Figure 5 - Unconstrained damping treatment
Structure :Ev(l+jp )

Viscoelastic layer: E1 (l+jill), ill< 1
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Figure 6 - Extensional damping. Contour lines for T) 0.05 ; 0.1 ; 0.15 ; 0.2
DAMPED BEAM
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Figure 8 - Extensional damping - Composite loss factor
DAMPED BEAM
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M4
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(EI)0 = (with v1 = v= 0 for a beam)

12 1 v, 2 -v2 -

H1 +H 2,do=
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Figure 10 - Shear damping for a plate or a beam
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Figure 11 - Shear damping for a tube
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Figure 12- Shear damping. Contour lines forrj =0.05; 0.1 ; 0.15; 0.2
DAMPED BEAM
STEEL H 1 = 0.01 m
M1 H v = 0.001 m
STEEL H2 = 0.002 m
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Figure 13 - Shear damping. Contour lines for n = 0.05 ; 0.1 ; 0.15; 0.2
DAMPED BEAM
STEEL H1 = 0.01 m
Ml Hv = 0.001 m
Al H2 = 0.006 m
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Figure 14- Shear damping. Contour lines for 1= 0.05; 0.1 ; 0.15; 0.2
DAMPED BEAM
STEEL H, = 0.01 m
M1 H = 0.001 M
CVR H2 =0.009 m
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Figure 15 - Shear damping. Contour lines for T = 0.05; 0.1 ; 0.15; 0.2
DAMPED BEAM
STEEL H, =0.01 mn
M2 Hv =0.001m.
STEEL H2 =0.002 m*
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Figure 17 - Shear damping Loss factor versus frequency for T - 27 *C
Theoretcal curve and experimental points (x)
DAMPED BEAM
STEEL H1 = 0.008 m
VISCO Hv = 0.0017 m
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Figure 18 - Shear damping Loss factor versus frequency for T = 27 °C
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ABSTRACT

This paper presents the results of a study to determine the feasibility of using statistical energy

analysis (SEA) methods for the design of viscoelastic passive damping treatments. The primary

emphasis of the study was to determine the applicability of SEA methods for predicting the

response of damped structures in the high frequency, high modal density regime where modal

methods such as the modal strain energy technique become inappropriate because of model

complexity or uncertainties in geometry. The other area of interest was the use of SEA augmented

by modal strain energy methods as a type of substructuring technique for large, complex

structures. To accomplish this investigation, the VAPEPS SEA code was used to model a

component test article in several damped configurations and the results were compared to available

test data to determine the validity of the analysis methods. The component test article was

constructed during the Reliability for Satellite Equipment in Environmental Vibration (RELSAT)

program as a developmental platform representative of satellite equipment support structures which

are subjected to high-level vibroacoustic environments typic'J of launch vehicles.
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INTRODUCTION

Recent advances in the field of viscoelastic passive damping have been numerous and cover a wide

variety of disciplines. They were successfully used in the "Reliability for Satellite Equipment in
Environmental Vibration (RELSAT)" program to demonstrate the use of viscoelastic passive

damping to control the vibroacoustic response of satellite avionics equipment (reference 1). In

particular, an analysis technique utilizing finite element modeling and the modal strain energy
(MSE) method is now being used to analytically predict the effects of applying viscoelastic

damping treatments to structures (reference 2). Since the technique is based on finite elements, it is

possible to analyze a wide variety of structural configurations, however, the size of the model
required to accurately predict damping rapidly increases with the size and complexity of the

structure. For this reason, a study is currently in progress at Boeing Aerospace to determine the

feasibility of using finite element modeling and MSE to analyze the design of damping treatments

on the substructure-level and statistical energy analysis (SEA) to evaluate the resulting changes in

the vibroacoustic responses on the system level. This paper presents the approach that is being

used in the study and discusses some preliminary results.

BACKGROUND

The study described in this paper is an extension of work that was performed by Boeing Aerospace

on the RELSAT program. The program was started approximately 6 years ago by the AFWAL
Flight Dynamics Laboratory under the direction of Dr. Lynn Rogers and was completed last year.

The RELSAT program was a study to investigate the use of viscoelastic passive damping

technology to reduce the structural response of typical satellite systems to high-level acoustic noise.

The approach used was to (1) design passive damping treatments into an example satellite system

and (2) perform acoustic and modal survey testing on the structure to verify their effectiveness.

A pictorial view of the program methodology is shown in figure 1. The Boeing Aerospace Inertial

Upper Stage (IUS), which is subjected to the severe launch vibroacoustic environments of the

Space Shuttle and Titan launch vehicles, was selected as the baseline satellite system. System

requirements were outlined, system disturbances were identified, and a set of goals for a

redesigned damped dynamic test article were established. A sketch of the IUS is shown as the first
illustration in figure 1. The harshest vibrational environment endured by the IUS occurs during

launch when the acoustic noise in the Space Shuttle payload bay typically reaches levels of 145 db

overall from 20 to 2000 Hz. The design of damping treatments for the IUS dynamic test vehicle
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(DTV) was carried out in several stages using finite element techniques and the modal strain energy
(MSE) method to analytically predict the effectiveness of the designs.

To conduct the design development phase in a cost effective manner, a smaller substructure

representative of the LUS DTV equipment support section was designed and fabricated. A finite

element model of the substructure is shown as the second illustration in figure 1. Several design,

analysis, and test cycles were performed to evaluate a wide variety of dampingconcepts and to

establish the validity of the analysis methods. The preliminary design development on this smaller

substructure proved to be very valuable in choosing damping treatments for application to the full

scale DTV.

The DTV was then analyzed by breaking it into several substructures representative of critical

portions of the structure. Damping treatments were designed and optimized for these substructures

and then applied to the full vehicle for testing. All of the damping treatments for the DTV were
designed and optimized using finite element analysis and the MSE method to predict damping
levels. Figure 2 shows the finite element models and lists the damping treatments designed with

each one. The global model described the entire DTV in the test configuration including a
simulated spacecraft payload structure. This model was used only to design a ring damping

treatment for the global ring type modes of vibration. The model was much too coarse to design

damping treatments for the local substructures. The other three substructure models represent

critical isolated portions of the DTV and were used to design the remainder of the damping

treatments. Detailed descriptions of the damping treatments and the design optimization process

are contained in reference 3.

Figure 3 shows the DTV located in the Boeing Aerospace Environmental Test Laboratory acoustic

cell for testing. The acoustic testing revealed that the structural response at all equipment locations
were substantially reduced by the addition of the damping treatments. A summary of the RMS

response of five critical IUS avionics components is given in figure 4. Overall response levels at

the avionics equipment attachment points were typically reduced by 62%. Acceleration response

power spectral density (PSD) envelopes for an encrypter located on the DTV equipment support

deck are shown in figures 5 - 7 before and after the application of viscoelastic passive damping.

This is typical of the types of reductions achieved. Analyses and tests were also performed to

assess the impact of the damping treatments on IUS system-level requirements such as vehicle

weight, outgassing, strength, and heat transfer.
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Although the results of the acoustic tests of the DTV showed that significant decreases in the

vibroacoustic responses were achieved through application of the viscoelastic passive damping

treatments, a good test/analysis correlation of predicted and measured modal damping and vibration

levels could not be obtained. Due to the large size and complexity of the finite element models

which include the viscoelastic damping treatments, it was not economically feasible to run a

dynamic analysis with an overall finite element structural model of the DTV. Ordinary

substructuring techniques based on component mode synthesis would not significantly decrease

the problem size because no simple boundaries exist between the various substructures, and a large

number of component modes would have to be carried to adequately predict the local deformations
in the substructures.

Through the RELSAT program, it was realized that the modal strain energy method is a powerful

analysis tool for damping design that is limited primarily by the ability to model the damped

structure with finite elements. Extremely large, detailed models must be developed which tend to

be very costly in terms of computer time to run the models and manpower to interpret the results.

Areas identified for further research included the refinement of substructuring techniques and the

development of an economical method to determine system-level responses from substructure-level

analyses. The application of statistical energy analysis (SEA) methods was identified as a

technique which should be investigated to address this issue. It was felt that SEA could potentially

be a good method to track the principal energy paths of acoustic and vibration disturbances, to

identify the critical substructures for the application of damping, and to envelope the system-level

responses in the high-frequency 200- to 2000-Hz range.

STATISTICAL ENERGY ANALYSIS (SEA)

SEA is an analytical method to predict vibration and acoustic responses of dynamic systems by

treating the structural or acoustical mode shapes and frequencies as statistical parameters. The

dynamic energy is used to describe the state of the system and simple power balance equations

describe the interactions between the coupled subsystems that constitute the dynamic system.

Reference 4 contains a comprehensive overview of the development and engineering applications

of the SEA method. As described in the reference, the general steps required in SEA to develop a

model and calculate responses are outlined in figure 8. The first three steps are the development of

the SEA models of the subsystems and their interactions. These steps require engineering

experience and judgement. The last three steps involve computational procedures that can be

performed through implementation of one of several available general purpose SEA computer

codes.
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For this study, the Vibroacoustic Payload Environment Prediction System (VAPEPS) code was

used to perform the SEA response predictions. The VAPEPS code development was sponsored

by NASA and the Air Force Space Division. The development and maintenance of the code is

currently being performed by the Jet Propulsion Laboratory (JPL). In addition to the SEA option,

VAPEPS provides a database of vibration and acoustic data that can be used with empirical and

semiempirical techniques for determining vibroacoustic responses and test environments.

The SEA model of the IUS DTV that was developed for this study is shown in figure 9. An

illustration of the DTV acoustic test configuration is shown with the associated power flow

diagram for the dynamic system. The diagram describes the acoustic and structural subsystems

and their interconnections. This model was used to predict the acoustic environment internal to the

IUS interstage structure and the vibration response of a battery located on the interstage structure.

Equivalent plates were used for the SEA model of the interstage structure. The equivalent plate

calculations are presented in figure 10. Two approaches were used in the equivalent plate

calculations. The first approach included stiffening effects of the interstage rings by determining

an equivalent plate thickness. The second approach considered the rings as boundary conditions.

The predicted IUS interstage internal acoustic environment is shown in figure 11 for the two

equivalent plate modeling approaches. Also shown is the acoustic sound pressure level (SPL) data

obtained from microphones located in the interstage internal volume during the acoustic test of the

IUS DTV. Although good correlation was obtained with both approaches, the spectral levels

predicted by the first approach appear to correlate better with the test data. The predicted

acceleration PSD for the vibration response of the interstage battery is shown in figure 12. The

PSD of the vibration responses measured by accelerometers mounted on the battery during the

acoustic tests are also shown for comparison. It can be seen that the SEA prediction correlates

fairly well with the test data, however, the correlation between the predicted and measured

vibration responses does not appear to be as good as that obtained for the acoustic responses. One

cause for this is VAPEP's inability to account for non-structural mass in its coupling and damping

calculations. Currently, VAPEPS only uses non-structural mass in the conversion from energy to

mean response for the entire element. This may be one area where finite element methods can be

used to effectively augment the response predictions for avionics equipment and include the

localized effects of a lumped mass.
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SUMMARY

In summary, although the results of this study are still very preliminary, it appears that SEA may

provide the means to analytically establish avionics component vibration and acoustic

environments. Although the method requires an experienced user to obtain accurate results, it

provides a systematic means for determining vibroacoustic responses that will be particularly

useful when performing vehicle design trade studies in which predicting the absolute magnitude of

the responses may not be as important as predicting the differences produced by changes in the
design trade parameters. The acoustic test data obtained during the RELSAT program will be

useful to correlate with SEA predictions of the differences in vibroacoustic responses produced by
varying levels of substructure damping. This will be the emphasis of future efforts for this study.

During the RELSAT program, viscoelastic passive damping treatments were designed for an

extremely complex structure using finite element structural modeling techniques and the MSE

damping prediction method. By isolating portions of the structure down to substructures, it was

possible to cost effectively design damping treatments for an otherwise intractable structure. The

significant reductions in the vibroacoustic responses observed during the acoustic testing of the
IUS DTV verified the viscoelastic passive damping design and analysis methodology. The MSE

method was shown to be a powerful analysis tool that is limited primarily by the computational

cost required to model a large complex damped structure with finite elements. This study is

investigating the application of SEA methods to address this issue of economically determining

system level responses utilizing the information provided by substructure level analyses. The

:3sults to date of this study and of the RELSAT program have demonstrated the use of new

damping design and analysis methods and conclusively shown that viscoelastic passive damping

has the potential to yield a system level payoff in the form of lower vibroacoustic environments and

increased reliability for future space systems if incorporated early in the design cycle.
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Figure 3. DTV Set Up for Acoustic Testing

Undamped Damped Percent
Component Direction Response Response Reduction

G RMS G RMS

Encrypter Axial 21.83 6.47 70
Radial 17.26 2.98 83
Tangential 19.67 2.58 87

ESS Computer Axial 16.27 2.40 85
Radial 12.01 4.20 65
Tangential 17.74 3.99 78

REM Axial 15.78 9.75 38
Radial 11.12 6.62 40
Tangential 13.48 10.16 25

ESS Battery Axial 11.84 3.81 68
Radial 10.61 3.74 65
Tangential 15.84 3.86 76

Interstage Axial 5.09 3.00 41
Battery Radial 8.63 5.51 36

1 Tangential 10.08 2.83 72

Figure 4. Overall Response of Five Critical DTV Avionics Components
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Step 1: Identify SEA Subsystems
" Substructure
" Identify similar modes

Step 2: Identify Junctions
. Point, line, and area junctions

Step 3: Compute Power Inputs
* Impedance formulation

Step 4: Compute SEA Parameters
" Modal densities
" Coupling factors
" Damping factors

Step 5: Power Balance Equations
" Form matrix equation
* Solve for modal energies

Step 6: Response Statistics
" Relate to modal energies
" Mean response
" Standard deviation

Figure 8. General Procedure for SEA
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Average Plate
Thickness 0.059"

* Use VAPEPS EQPL Processor to Calculate

Equivalent Homogeneous Plate Properties

* Two Possible Approaches:

1. Include Rings in Equivalent Plate Calculation

Thickness = 2.18 in
Modulus = 7.51E+05 psi

17" Density , 1.90E-05 Ib S2/ in

2. Consider Rings as Boundary Conditions

Thickness - 0.299 in
Modulus - 3.41IE+06 psi
Density - 8.44E-05 lbf s2/ in

8.95"

Figure 10. Interstage Panels Equivalent Plate Calculations for VAPEPS SEA Model
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RELSAT DAMPED SATELLITE EQUIPMENT PANELS - DYNAMIC PERFORMANCE*

by

C. V. Stahle, J. A. Staley, and J. C. Strain

General Electric Space Systems Division

ABSTRACT

This paper presents performance results for viscoelastically damped satellite
equipment panel designs. Results show that launch vibroacoustic response
acceleration power spectrLi densities at component mounting locations are
reduced by up to 20 dB by damped panel designs. Corresponding derived
component random vibration test specification PSDs are reduced by about 13 dB
by damped panel designs. Component RMS response levels for the specifications
for damped panels are predicted to be reduced by over 50 percent compared to
baseline undamped panel designs basei on a random response spectrum prediction
method. Damped panel designs showed low hysteresis under application and
removal of static loads. Test data show that viscoelastic material which had
been in space for about four years maintained good damping and stiffness
properties compared to materials which had not been in space. Viscoelastic
damping treatments appear applicable to alignment critical structures because
of low hysteresis under load application and removal and good property
stability under long term space vacuum exposure. Results shown demonstrate the
validity of methods used to design and fabricate vi...oelastically damped
satellite equipment panels.

*This work was performed for the Air Force Flight Dynamics Laboratory under the
RELSAT (Reliability for Satellite 3quipment in Environmental Vibration)
Contract.
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1.0 INTRODUCTION

Figure 1 shows a summary of the General Electric RELSAT program objective,
approach and expected payoffs. The RELSAT program is aimed at improving
satellite reliability by reducing satellite equipment failures due to effects
of the launch vibroacoustic environment. The specific objective is to
demonstrate the use of passive damping to control vibration of panel mounted
equipment during launch. The approach is to design, fabricate, and test damped
panels corresponding to Bay 3 of the DSCS (Defense Satellite Communication
System) III Transponder Panel. This effort involved three major tasks: 1)
evaluation of candidate damping material characteristics; 2) development and
implementation of design concepts based on selected viscoelastic materials
(VEMS); and 3) performing vibration, acoustic, static, and shock tests to
evaluate the performance of damped equipment panel design concepts. This paper
presents some of the performance results from the third task. Results from the
first two tasks are reported in two other papers.1'2 The payoffs which are
expected to result from development of damped panel designs for satellite
equipment panels include: 1) improved stability and pointing accuracy for
alignment critical items which might be sensitive to effects of onboard
disturbances and maneuvers; 2) a 20 percent increase in the satellite
reliability on orbit as a result of a 50 percent reduction in the component
vibroacoustic environment during launch; 3) a reduction in the potentially
large number of ground test failures by 50 percent; and 4) a reduction of the
spacecraft system development and operating cost by an estimated $40 million
for a system consisting of a total of 14 DSCS III type satellites with a
constellation of four satellites on orbit at any given time.

Figure 2 shows several key points relative to the RELSAT program. The DSCS III
spacecraft shown is the system selected as the basis for the demonstration
program. It is an Air Force communication satellite. Four are in
geosynchronous orbit at any given time to give global communication coverage.
The specific test article selected for study was Bay 3 of the DSCS III
Transponder (North) panel. This bay has three 10 watt Traveling Wave Tube
Amplifiers (TWTAs) and several smaller components mounted on it. Bay 3 is
about 2 ft by 2 ft square and weighs about 50 lb including components and
structure. The baseline panel structure consists of a magnesium base plate
wich two stiffeners. The design requirements for the panel include
incerdisciplinary constraints such as the need to radiate waste heat from the
TWTAs through the base panel to space. Optical Solar Reflectors (OSRs) are
mounted on the space side of the panel for solar radiation reflection and
survivability. The panel must also have the structural integrity to withstand
the steady state and low frequency accelerations during the launch phase. The
center of Figure 2 shows a typical reduced temperature nomogram 3 for a VEM
which might be considered for design of a damped equipment panel for the
baseline DSCS III. The nomogram shows VEM shear modulus and damping properties
as a function of frequency ard temperature. An important requirement for VEMS
for satellite applications is that they be space compatible, i.e., have low
outgassing characteristics.4  Figure 2 also indicates that the ultimate
objective of the demonstration program is to develop damped stable platforms
for satellite equipment and to develop damped stable platforms for satellite
equipment and to demonstrate the technology for design and manufacture
(fabrication) of such platforms.
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2.0 DAMPING PAYOFFS

The interest in providing damping in satellite equipment panels has resulted
from a history of failures after launch of a satellite and during ground
development and production testing of a satellite, its subsystems, and its
components. A significant number of spacecraft anomalies have been related to
the launch vibration environment.5 Figure 3 shows flight failures or
malfunctions vs days after launch. Figure 3 also shows that about 40 percent
of these are related to vibration. A reduction of these failures from 40 to
about 20 percent and a corresponding reduction in ground test failures is
expected to result in a total savings of about $40 million for a complement of
14 DSCS III type satellites. Vibration is also a major cause of failures
occurring during ground environmental tests of spacecraft, its subsystems, and
its components. Figure 4 shows that during design qualification, 64 percent of
failures were related to vibration. 6 Following qualification of the satellite
design, 30 percent of failures in production acceptance tests were vibration
related. With damped equipment panel designs similar to those developed under
the GE RELSAT program, a 50 percent reduction in vibration/acoustic related
ground test failures is expected.

A cost/reliability model which can be used to determine payoffs from equipment
panel damping is available in a computer program known as OCTAVE (Optimized
Cost of Testing for Acoustic and Vibration Environments.7 8  This computer
program showed that a significant increase in reliability and decrease in
satellite system cost could be obtained if the vibroacoustic responses during
launch could be reduced by 50 percent. The cost and reliability improvements
were based on a statistical decision theory model which in turn used a data
base of cost/failure rate information for satellite components. A model of the
spacecraft system was first developed which consisted of three major elements:
1) satellite housekeeping components; 2) the satellite structure; and 3) the
payload (i.e., the communication system components). Various types of cost
elements were incorporated in the model including direct and probablistic cost
types. Ground test options were considered which would assure that the
satellite had a high reliability on orbit at optimum cost. The value of 50
percent reduction in the launch vibroacoustic environment for components was
assumed due to equipment panel damping. The results showed a 20 percent
improvement in reliability on orbit and a $40 million savings for a 14
spacecraft production (DSCS III type system).

The history of increasing severity of vibration environments over the past
decade for spacecraft components shows a smaller portion of spacecraft
components passing vibration tests. This trend of increasing vibration
environment is related to the increased acoustic sound pressure levels at
launch and the need for increased vibroacoustic reliability. In particular,
the Space Transportation System (STS) (or Space Shuttle) exhibits an increase
in sound pressure levels in the low frequency range (below 300 Hz) compared to
earlier expendable launch vehicles. Vibration requirements for new spacecraft
currently being developed are higher than for previous spacecraft. Figure 5
shows: 1) a component random vibration test specification for a large diameter
spacecraft being developed for launch on the Shuttle; 2) a corresponding
specification for a small diameter (9 ft or less) spacecraft which was
developed for launch on an expendable launch vehicle; and 3) the specification
for the large diameter payload reduced by a factor of two on an RMS basis (by a
factor of four or 6 dB on a PSD basis). Figure 5 shows that damping could
reduce component random vibration levels for large dianeter Shuttle payloads to

JBB-3



levels for smaller payloads developed for flight on expendable launch vehicles.
Figure 5 also shows that the most significant random vibration environment is
currently in the low frequency range (below 300 Hz) for shuttle launched
payloads.

3. TEST PANELS

Damping materials were evaluated, damping materials were selected, damped panel
design concepts were developed and evaluated, and baseline and damped panels
corresponding to Bay 3 of the DSCS III transponder panel were designed and
fabricated. Figure 6 shows a baseline panel consisting of a base plate with
two stiffeners. Three mass simulated TWTAs are mounted directly to the base
panel. Figure 7 shows a corresponding damped panel. This damped panel has
damped honeycomb sandwich stiffeners. An aluminum core/aluminum face sandwich
is bonded to the base plate to provide inherent stiffness of the panel
independent of the damping treatment. The VEM is bonded to this honeycomb
sandwich stiffener. An aluminum core/graphite-epoxy face sandwich is then
bonded to the VEM to provide a constraining sandwich for the VEM. Damped
panels were also made with hat stiffeners riveted to the base plate and with a
VEM layer with a graphite-epoxy constraining layer bonded to the hat stiffener.
Various tests were conducted on the baseline and damped panels. These included
acoustic, sine vijration, static, creep, and pyro shock tests. Pyro shock test
results are described briefly below. Results of acoustic tests are then
discussed in some detail. Component random vibration test requirements are
derived from the vibroacoustic tests for the baseline and damped panels. The
implication for component random vibration test requirements are considered to
be the primary result of the RELSAT satellite equipment panel damping
demonstration effort.

4. PYRO SHOCK TESTS

Pyro shock tests were performed on the baseline and a damped panel. In
separate tests, these panels were mounted in one bay of a dual bay simulator
which is normally used to perform spacecraft separation shock tests for
components mounted on the DSCS III transponder panel. The shock was produced
by firing an explosive separation nut. In these tests, the separation nut was
activated by a high pressure gas supply connected to the nut. This separation
nut is used to separate the DSCS III from the IUS and from a second DSCS III
spacecraft. Separation nuts are on bolts at either ends of the two longerons
which form two ends of the DSCS III transponder panel. Three separation nut
firings were made each for the baseline and a damped panel. Triaxial
accelerometers were mounted at the shock source and two accelerometers were
attached near the mounting locations of each of the TWTA masses on each of the
panels tested. One of these two accelerometers was oriented normal to the test
panel and the other was oriented in the in-plane direction of the panel in the
direction of separation nut firing (in the direction of the longeron).

Figure 8 shows comparisons of damped and baseline shock spectra for the two
accelerometers mounted near TWTA number 2 which was mounted in the middle of
each panel. Results shown are envelopes for three firings, although results
from the three firings for each panel showed little variation in the shock
spectra. Figure 8 shows results for the out-of-plane and in-plane
accelerometers. The figure shows that the shock spectra peak near 2200 Hz with
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maximum levels on the order of 1000 g. This is above the frequency where
significant damping occurs. Damping treatments were designed primarily to
reduce vibroacoustic response in the out-of-plane direction in the 50 to 500 Hz
range. Damping reduced the peak shock in the out-of-plane shock spectra by
about 30 percent. The out-of-plane direction is the direction in which damping
was intended to be provided by the damped panel design. Figure 8 shows that
the peak in the shock spectra for the in-plane dirpction was increased by about
30 percent for the damped panel relative to the baseline. This may be due to
the addition of stiffeners for the damped panel configuration which connect the
longerons to the TVTA's.

5. VIBROACOUSTIC TESTS

Acoustic tests were conducted on the baseline and seven damped panel
configurations. Panels -with bct hat and sandwich damped bLlfleners W%:L
tested. The configurations included four different viscoelastic materials.
Tests were conducted at temperatures ranging from 60 to 78 degrees F. Two
tests were conducted with four panels suspended in the GE acoustic test
facility for each test. Tests were conducted at 139.3 and 143.8 dB overall.
Instrumentation on each panel consisted of 12 out-of-plane accelerometers and
two in-plane accelerometers attached at component mounting locations.
Thermocouples were used to monitor temperatures of viscoelastic materials.
Four microphones were used to measure and control the acoustic test
environment. Figure 9 shows one-third octave band qualification sound pressure
levels for small diameter and large diameter shuttle payloads.9,10 The acoustic
environment used for acoustic tests corresponded to the shape of the 9 ft
payload sound pressure level curve. Test vibroacoustic levels were scaled to
correspond to acoustic levels shown in Figure 9. The 9 ft diameter levels
correspond to a DSCS III qualification test level.

Figure 10 shows four of the damped panels suspended in the GE acoustic test
facility. Each panel was mounted to a heavy aluminum frame which was supported
by a low frequency suspension system. Figure 10 shows the location of four
out-of-plane accelerometers at the mounting locations for each TWTA mass. Each
panel had two in-plane accelerometers. In-plane vibroacoustic responses were
small compared to out-of-plane responses. For each of the panels tested, the
12 out-of-plane accelerometers were analyzed statistically to obtain a 95
percentile level. The spectral content of the data were then scaled to
acoustic levels shown in Figure 9 for the 9 and 15 ft diameter shuttle payload
qualification acoustic test levels. Figure 11 shows results for the 9 ft
diameter payload for test data for 72 degrees F. Results are shown for the
baseline and a damped panel. Results for all damped panels were very similar.
Results shown in Figure 11 are for the damped panel which gave the best results
for all panels tested. Other damped panel designs had similar vibroacoustic
responses but were slightly higher above 500 Hz. Figure 11 shows that damping
reduces response by up to 20 dB. The largest peaks for the baseline panel were
reduced the most and these peaks were in the low frequency range. Damping
reduced responses significantly for frequencies up to about 400 Hz. Figure 12
shows results scaled for the 15 ft diameter shuttle payload acoustic
environment at launch. These results indicate that damping can provide very
significant benefits for large diameter shuttle payloads.
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6. RANDOM VIBRATION SPECIFICATIONS

The Random Response Spectrum (RRS) method il was used to determine component
random vibration test requirements corresponding to the 95th percentile
out-of-plane random vibration levels determined from the acoustic tests for the
baseline and best damped panels. The RRS method is similar to the shock
spectrum concept. The RRS is the RMS response of a single-degree-of-freedom
oscillator to a random vibration input spectrum vs the oscillator resonant
frequency. A Q of ten was assumed for the component. The objective was to
generate a random vibration test spectrum which had an RRS similar to the RRS
for the actual component random vibration environment, i.e., for the 95th
percentile out-of-plane random vibration spectrum. Random vibration
specificatons were generated in this manner for the baseline and damped panel
component random vibration environments. Figure 13 shows the out-of-plane
random vibration spectrum and corresponding test spectrum for the 9 ft diameter
payload (DSCS) baseline panel qualification level. The RRS for this
specification level and the the 95 percentile out-of-plane data are also shown
in Figure 13. The RRS for the specification is seen to envelope that for the
actual baseline panel test data. The peak value of about 30 GRMS occurs for a
component natural frequency just above 100 Hz. Note that the largest
magnitudes of the test data, the specification, and the RRS are in the low
frequency region (below 300 Hz). Corresponding results for the damped panel
are shown in Figure 14. Damping significantly reduces the low frequency test
and specification random vibration spectrum levels. The largest RRS level now
occurs at about 2000 Hz for both the damped panel test data and specification.
The peak GRMS at this frequency, however is now only about 13 g. Figure 15
compares the specifications for the damped and baseline panels shown previously
in Figures 13 and 14. The maximum specification PSD has been reduced 13 dB
using damping. The maximum GRMS has been reduced by 64 percent for the damped
panel. Corresponding results for the 15 ft diameter shuttle payload are shown
in Figure 16. Here the damped panel PSD is seen to be reduced by 14 dB
relative to the baseline panel and the peak GRMS is reduced by 53 percent due
to damping. This figure shows that major benefits from damping can beexpected
for large diameter payloads on the shuttle. Component random vibration test
responses might be reduced from about 40 to about 20 GRMS by the addition of
damping to equipment panels.

7. DAMPED PANEL HYSTERESIS AND LONG TERM VEM STABILITY

A static load test was conducted on a panel with damped hat stiffeners. A load
was applied to each TWTA normal to the plane of the panel. The panel was
loaded statically to an 11 g (550 lb) load in increments of approximately 1 g.
The load was then removed in approximately 1 g increments. Deflections of the
panel and strains in hat stiffeners were measured. Figure 17 shows a plot of
strain in a hat stiffener vs total panel load for both the loading and
unloading cycle. Figure 17 shows that very low hysteresis occurred. This
result indicates that for the damped panel designs developed under RELSAT,
viscoelastic treatments may be feasible for application to platforms requiring
high alignment and pointing stability without introducing hysteresis during
loading and unloading events such as launch, orbit transfer, deployments, and
separations.

In April 1984, The Modular Attitude Control System (MACS) module was retrieved
form the Solar Max Mission'(SMM) spacecraft on a Shuttle repair mission. The
SMM spacecraft was launced in January of 1980. The Attitude Control
Electronics (ACE) component on the MACS module used viscoel.astic materials
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extensively for damping treatments. A piece of this material which had been in
orbit for ovtr four years was tested to determine its material properties after
four years exposure to space environment. Figure 18 shows the measured loss
factor and shear modulus (discrete data points) compared to properties of
similar nci-flight material (curves). The material retrieved from space is
seen to have excellent damping properties (circles) which are nearly identical
to the non-flight material. The shear modulus (squares) for the material which
was in orbit is slightly stiffer than the similar material which was not flown.
These results indicate that damping materials of the type used in the GE RELSAT
damped panel designs will retain their viscoelastic characteristics for long
periods of time when in orbit and could be quite useful for orbital damping
applications.

8. SUMMARY AND CONCLUSIONS

The primary objective of the GE RELSAT program was to develop and de-mc-nstrate
damped panel designs which would reduce the vibroacoustic response. An initiA
goal was to reduce the RMS response by 50 percent (6 dB). A reduction of this
magnitude was estimated to result in a cost savings of $14 million for 14
spacecraft system (DSCS type). The most significant Shuttle vibroacoustic
environmentz are in the low frequency range. The largest deflections and
stresses of components are expected here. Pyro shock tests showed attenuation
of out-of-plane shock spectra due to damping but an increase was seen in the
in-plane shock spectra tor damped panels. Vibroacoustic responses were reduced
up to 20 dB for power spectral densities in the 50 to 300 Hz range.
Corresponding component random vibration specificaiton levels were reduced
about 13 dB. The expected component RMS acceleration responses to derived
component random vibration specifications were reduced by 50 to 60 percent by
damped panel designs. Low hysteresis in static load deflection tests indicates
that damping may be applicable to alignment critical structures. Data recently
obtained on viscoelastic material which had been in space for four years showed
that long term space exposure had little or no effect on the material damping
and stiffness properties. Materials of this type appear applicable to orbital
damped panel designs for alignment critical structures.
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(RELIABILITY FOR SATELLITE EQUIPMENT IN ENVIRONMENTAL VIBRATION)

OBJECTIVE
0 GENERICALLY DEMONSTRATE PASSIVE DAMPING CONTROL OF PANEL

MOUNTED COMPONENT VIBRATION

APPROACH

* DESIGN, FABRICATE AND TEST DAMPED DSCS-III TRANSPONDER PANEL

- EVALUATE MATERIAL PROPERTIES
- DEVELOP AND IMPLEMENT DESIGN CONCEPTS
- PERFORM VIBRATION, ACOUSTIC, SHOCK AND STATIC TESTS

PAYOFFS

* STABLE PLATFORM WITH HIGH POINTING ACCURACY FOR MANEUVERS
AND ON-BOARD DISTURBANCES

* 20 PERCENT INCREASE IN RELIABILITY THROUGH 50 PERCENT
REDUCTION IN VIBRATION ENVIRONMENT

* REDUCE LARGE NUMBER OF TEST FAILURES BY 50 PERCENT

* REDUCE SPACE SYSTEM DEVELOPMENT/OPERATING COST BY $40M

Figure 1. RELSAT Program
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FIGURE 2. RELSAT DSCS III Baseline System
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Figure 10. RELSAT Panels in Acoustic Test Facility
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RELSAT DAMPED EQUIPMENT PANELS - ANALYSIS AND EXPERIMENTAL VERIFICATION

C. V. STALE, J. A. STALEY and J. C. STRAIN
General Electric Company
Valley Forge Space Center
RCA Astro Space Division

P.O. Box 8555, Philadelphia, PA 19101

ABSTRACT

The design, analysis and modal tests of viscoelastically damped spacecraft
equipment panel structures are presented. The work was performed as part of
the AFVAL RELSAT program and uses the DSCS III transponder panel to demonstrate
the generic control of equipment vibration with passive damping. Highly effec-
tive integrally damped panel designs are achieved with small increase in struc-
tural weight. A damped stiffener approach is used that satisfies interdisci-
plinary constraints such as heat dissipation. Strength and deflection criter-
ia are used that account for the load reduction and stiffness of the damped de-
sign. Two lightweight configurations are described: one using unidirectional
graphite epoxy (G/E) constraining layers and the other using G/E honeycomb con-
straining layers with an aluminum honeycomb stiffener. Loss factors greater
than 0.2 are obtained for low frequency modes using GE SMRD 100 damping ma-
terials. Damping is more than doubled in all modes below 500 Hz. The analysis
uses NASTRAN finite element models with modal strain energy and can be applied
to any complex design. Initial beam element tests compare analytical predic-
tions with test results for the G/E constraining layer and honeycomb configur-
ations using material properties from two different laboratories. Subsequent
panel tests indicate damped panel analyses predict low mode resonant frequen-
cies within 10 percent, damping loss factors within 30 percent and the temper-
ature of maximum damping within 10 degrees F. The major source of prediction
error appears to be material properties caused by measurement error, the tem-
perature shift relation and the reference temperature. More accurate material
property definition is recommended. The 20 dB attenuation of the vibroacou-
stic response, the material selection and panel fabrication are discussed in
two other papers included in the proceedings.

*The work reported herein was performed for the Air Force Wright Aeronautical
Laboratory, Contract No. F33615-82-C-3223, "Reliability for Satellite Equip-
ment in Environmental Vibration," under the technical direction of James
Eichenlaub and Lynn Rogers.
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1.0 INTRODUCTION

This paper discusses the design, analysis, and modal tests of viscoelastically
damped spacecraft equipment panels. Examination of early spacecraft flight
anomalies has indicated a large number are caused by the vibroacoustic launch
vibration. As a result, vibration requirements have been increased which has
led to a large number of ground test failures during component, subassembly
and spacecraft random vibration and acoustic tests. Even after qualification
tests of a spacecraft design have been successfully completed, subsequent
acceptance tests of production units exhibit a large number of failures indica-
ting a susceptability of the final designs to the vibroacoustic environment.
Although damping has been used effectively within electronic packages to im-
prove vibroacoustic reliability, its use to control equipment panel vibration
has been limited and generally applied to existing designs. Because studies
have shown that significant cost reductions can be obtained and that the vibro-
acoustic reliability can be significantly improved by reducing the random vi-
bration environment, the RELSAT program (Reliability for Satellite Eq1 ipment in
Environmental Vibration) has been initiated by AFWAL to generically demonstrate
the passive damping control of panel mounted component vibration. Parallel
RELSAT programs are being performed by Boeing and General Electric.

The approach used in the GE-RELSAT program is to design, fabricate and test a
damped DSCS III transponder panel. The DSCS III (Defense Satellite Communica-
tion System) spacecraft was selected because the design is mature and enables
interdisciplinary constraints to be readily defined. The goal is to achieve a
reduction of 6 dB in the random vibration environment. As shown in Figure 1,
large diameter shuttle spacecraft random vibration requirements exhibit high
spectral amplitudes in the frequency range below 200 Hz where major equipment
resonances occur. By obtaining a 6 dB reduction, the spectrum levels are re-
duced to those of current small diameter spacecraft. For any size spacecraft,
the vibroacoustic reliability is significantly enhanced.

Three workshop papers are included in the proceedings covering different as-
pects of the GE-RELSAT program. This paper discusses the design and analysis
of the panel and describes modal tests performed to verify the resonant fre-
quency and modal damping predictions. The quantification of the cost reduction
and reliability improvement, as well as the experimental results from acoustic
and shock tests are presented in a second paper. The third paper discussed
the selection of the viscoelastic material and describes the methods used in
fabricating the damped panel.

The following sections discuss the panel design and analysis, the correlation
of beam element tests with analytic predictions, comparison of panel modal
test results with analytical results, and finally the conclusions reached in
this portion of the RELSAT program.

2.0 TRANSPONDER PANEL DESIGN

The test article chosen for viscoelastic damping treatment was the North Panel
Bay 3 of the Defense Satellite Communications System (DSCS) III, Figure 2.
This equipment panel is approximately 27 inches square, constructed of magne-
sium thorium .18 inches thick and contains two integrally milled/riveted stif-
feners. Three 10 watt traveling wave tube amplifiers (TWTA's) are mounted on
it along with associated wave guides and electronics. These TWTA's place a
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severe design constraint on the panel since the thermal requirement to dissi-
pate their 30 watts of power makes the use of a lightweight honeycomb sandwich
for the base panel impractical. Hence, the thick .18 plate which is required
for thermal, not structural reasons.

The test articles for the RELSAT program utilize a .125 inch thick aluminum
plate to simulate the stiffness of the actual .18 inch thick magnesium-thorium
panel. The TWTA simulators are made of an aluminum block mounted to a steel
plate. They provide the weight and center of gravity of the actual TVTA's and
other components necessary to make the total panel weight equal to that of the
actual flight hardware.

2.1 BASELINE UNDAMPED PANEL

This panel was designed to closely simulate the "as is" undamped North Panel
Bay 3. It consists of the aluminum base plate and three TWTA simulators plus
two aluminum hat section stiffeners in lieu of the integrally milled/riveted
stiffeners on the flight hardware. These stiffeners were sized to provide a
fundamental frequency near that of the actual DSCS panel. Figure 3 is a photo-
graph of this test article, the NASTRAN model for which is shown in Figure 4.
This model which contained 412 GRIDS and 259 ASET degrees of freedom (DOF) was
constructed entirely of CQUAD4 elements with the exception of the TVTA's which
were single 6 DOF nodes attached to the panel with rigid elements.

A modal test was performed on the baseline panel to provide a reference for
damped panel measurements, and to verify analysis methods without the added
complexity of modeling viscoelastic properties. Inaccuracies in the undamped
panel model will be propagated in the viscoelastic properties used for damped
panel analysis since these are very frequency dependent. These inaccuracies
may result from both lack of detail in modelling, and from the unknown boundary
condition.

2.2 DAMPED PANEL DESIGN

Two damped stiffener concepts were used in the designs. These were a honey-
comb sandwich stiffener with a honeycomb sandwich constraining layer, and an
aluminum hat section stiffener with a graphite constraining layer. Both of
these concepts are illustrated in Figure 5. As in the baseline design, the
aluminum hat section stiffener simulates the integrally milled/riveted stiffen-
er on the actual DSCS III spacecraft equipment panel. The honeycomb sandwich
stiffener is designed for lighter weight, and maximizes the strain energy in
the viscoelastic material through a larger separation of the constraining layer
neutral axis from the viscoelastic layer. One example, using each of these two
concepts will be discussed in this section: a panel with honeycomb stiffeners
and SMRD 10OF90B damping material, and a panel with aluminum hat section stif-
feners and SMRD 10OB5OA damping material.

A total of seven damped panels were designed for the RELSAT program. The scope
of this paper is to describe the analysis used to design the panel damping
treatments, and the correlation of the analysis to data from the modal test
performed on one of the damped test articles.
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2.2.1 DAMPED DESIGN CRITERIA

A primary objective of this effort is to demonstrate a 50Z reduction of vibro-
acoustic response by developing damped panel designs. A preliminary damping
criteria which is expected to accomplish this is:

1) a minimum loss factor of 0.30 in the fundamental
equipment panel mode, and

2) a minimum loss factor of 0.10 for all other major panel
modes up to 500 Hz.

In addition to the damping criteria, structural design criteria must also be
established.

A set of structural design criteria have been established for developing damped
panel designs. These criteria are based on varying degrees of conservatism in
the assumptions regarding: 1) the degree to which the vibroacoustic loads have
been reduced, 2) limits on expected deflections, and 3) the degree to which the
viscoelastic damping treatment is assumed to share in design loads for the pan-
el structure.

Equivalent steady load factors are often used for satellite structure design.
These load factors are usually composed of two parts: 1) a low frequency or
quasi-steady part which consists of the nearly steady acceleration at liftoff
plus a low frequency (typically of the order of two to fifty Hz) transient dur-
ing liftoff; and 2) a higher frequency vibroacoustic portion induced by acous-
tic pressures caused by the propulsion system during launch. The sum of these
two effects results in an equivalent design load factor which is used for de-
sign of secondary structures and components. The primary structure is gener-
ally designed by the quasi-steady portion only.

Three structural design criteria for the damped DTA designs are considered as
shown in Table 1.

Criterion I - Baseline: Designs using this criterion represent "add-on" damp-
ing configurations. These designs consider neither the reduced dynamic loads
due to damping nor the load carrying capacity of the damping treatment. For
the DSCS III transponder panel the baseline structural design criterion con-
sists of a 60 Hz minimum frequency requirement and a 35 G total load factor.
The 35 G load is the sum of an 11.5 G quasi-static and a 23.5 G vibroacoustic
load.

Criterion II - Conservative Integrally Damped: This criterion considers the
reduction in dynamic loads due to damping, but does not allow for the load car-
rying capability of the damping treatment. The structural integrity of the
panel is maintained by the undamped structure which is designed to a load fac-
tor which has now been significantly reduced by damping. The goal of the GE
RELSAT program was to reduce the vibroacoustic portion of the dynamic loading
by 50 percent. The total load factor for the criterion II design is therefore
the sum of an 11.5 G quasi-steady load and a vibroacoustic load reduced to
11.8 G, or 23.3 G as compared to 35 G for the criterion I design. The stiff-
ness of the undamped panel designed to this lower load factor will be less than
that of the baseline panel, but it's deflection under the combined quasi-steady
and vibroacoustic load of 23.3 G will be kept the same as that of the baseline
panel under 35 G's.
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Criterion III - Advanced Integrally Damped: This design criterion considers
not only the reduction in vibroacoustic load due to damping, but also allows
for the damping treatment's load carrying capability. This will provide the
lightest weight damped design. The total design load factor remains at 23.3 G
as in criterion II, but allowing the damping treatment to carry part of the
structural loads v.ill result in a lower weight design. For this criterion, the
stiffness of the undamped panel may be further reduced using the requirement
that the deflection under 23.3 G of the damped criterion III design does not
exceed that of the undamped criterion II design under the same load.

Table 2 and Figure 6 illustrate the structural weight obtainable with the three
criteria. This table compares preliminary design results using all three cri-
teria to the undamped baseline. The first three damped designs utilized an
aluminum hat section stiffener, with a graphite constraining layer, while the
last used a honeycomb sandwich stiffener and constraining layer. The criterion
II design with hat stiffeners is seen to provide a 2% structural weight reduc-
tion from the add-on, and the criteria III design with hat stiffeners provides
an additional 2% reduction. Using honeycomb sandwich stiffeners in place of
the aluminum hats, reduces the weight by another 8% so that it is comparable in
in weight to the original undamped structure.

Final designs of the RELSAT test articles were all performed using criterion
III.

2.2.2 DESIGN ANALYSIS METHODS

Design of the damped panels was performed primarily with MSC NASTRAN modal
strain energy (MSE) calculations . The strain energy option in NASTRAN outputs
tables of strain energy in each element of the NASTRAN finite element model,
for each mode shape calculated. The viscoelastic material is modeled with
solid brick elements having a shear modulus which is selected for a temperature
and frequency. The ratio of the MSE in the viscoelastic elements, to the total
HSE in the mode shape, multiplied by a material loss factor gives the composite
loss factor. Since the resulting loss factor is correct only for the selected
temperature and frequency several runs must be made using differend VEM shear
moduli to get results for all modes of interest. A NASTRAN direct frequency
response analysis will produce sinusoidal transfer functions which account for
the frequency dependence of the shear modulus andloss factor in a single run.
However, if the structure being analyzed does not have modes which are well
enough separated to be considered as single-degree-of-freedom responses, the
equivalent normal modal characteristics cannot be readily obtained.

Of all the variables in the finite element model, the shear modulus of the VEM,
which is both frequency and temperature dependent, is the most difficult
to quantify. The shear modulus was obtained from VEM test data which is reduced
by a least squares fit to equations for shear modulus and loss factor as a
function of frequency and reduced frequency. The reduced frequency is the
frequency multiplied by a shift parameter which is a function of temperatires
relative to a reference temperature, To. Experience has shown that thiR refer-
ence temperature is difficult to choose properly and that the size of typical
discrepancies which often occur can produce significant differences in material
properties using test data from different sources. An accuraLe and consistent
method for choosing To has been determined to be a much needed development to
increase the reliauility of finite element damping calculations.
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Another, much simpler but often useful analysis method is that described by
Abdulhadi 8. This is a "general analysis... for three layer plates consisting
of two distinct plate type facings and a core that carries shear stresses
only." A sixth order equation is solved to obtain composite frequency and loss
factor for various boundary conditions. Abdulhadi's method is a useful method
for optimization of damping treatments for uniform beams and plates. This
anlaysis method was used to size sub-panel dampers. These graphite epoxy con-
straining layer damper strips were added to reduce the acoustic response of the
sub-panels, which had frequencies calculated to be between 300 and 500 Hz.

2.2.3 SMRD 10OF90B DAMPED, HONEYCOMB STIFFENED PANEL

This panel uses the aluminum baseplate and three TWTA simulators previously
described, as do all of the test articles. It incorporates four honeycomb
sandwich stiffeners in a "criss-cross" pattern. These are made from .4 inch
thick Hexcel 1/8-5052-.002 aluminum honeycomb with a 5 mul aluminum lower face
sheet and 30 mil aluminum upper face sheet. The damping is provided by .25
inch thick General Electric SMRD 10OF90B viscoelastic damping material between
the stiffeners and a honeycomb sandwich constraining layer. The constraining
layer consists of .4 inch thick Hexcel 1/8-5052-.002 aluminum honeycomb with a
lower face sheet of 5 mil uniaxial HMS/CE339 graphite epoxy and upper face
sheet of 80 mils uniaxial HMS/CE339. A sketch of this stiffener/constraining
layer is shown in Figure 5.

The .5 inch width of the stiffeners was chosen as a result of previous para-
metric analysis on a stiffened end supported plate which showed this width to
provide optimum damping for the lowest weight, and the desire to use as little
of the panel area as possible since most satellite equipment panels are very
densely filled with components.

The panel stiffener height and face sheet are designed to provide a minimum
frequency to satisfy the static deflection requirements of criterion III. The
constraining sandwich layer is designed to provide adequate stiffness under the
transient and vibroacoustic loads of criterion III and, along with the visco-
elastic material, to provide a minimum loss factor of .3 in the fundamental
mode, and .1 for all important modes below 500 Hz. Figure 7 is a photograph of
this panel. The NASTRAN model used for correlation with the modal test data is
shown in Figure 8. This model contained 674 GRIDs and 294 ASET DOF. A more
coarse model with 303 GRIDs and 78 ASET DOF was used in performing the para-
metric analyses.

NASTRAN Modal Strain Energy (MSE) analyses were run to determine the first mode
mode loss factors for the various parametric configurations, and to give a
conservative estimate of.the loss factors for the higher modes. Figure 9 shows
the NASTRAN MSE in the VEM plotted vs. VEM thickness, with the chosen design
point circled. NASTRAN MSE calculations were made for a wide range of VEM shear
modulus to give the loss factors for all modes up to 500 Hz. The calculated
composite loss factors are plotted vs. frequency in Figure 10 for a temperature
range of 60* F to 700 F, the temperature range during launch.
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2.2.4 SMRD 10OB5OA DAMPED, HAT SECTION STIFFENED PANEL

This design employs four aluminum hat section stiffeners in the same pattern
as the stiffeners of the honeycomb stiffener panel. These are .5 inches high,
.5 inches wide, and bent up from 1/32 inch aluminum. The damping is provided
by .10 inch thick SMRD 10OB5OA viscoelastic damping material and a constraining
layer of .25 inch thick uniaxial HMS/CE339 graphite epoxy. A photograph of
this panel is presented in Figure 11 and the NASTRAN model containing 367 GRIDs
and 78 ASET DOF is shown in Figure 5 along with a sketch depicting the stiffen-
er/constraining layer configuration.

NASTRAN MSE analyses were run to determine the first mode loss factors for the
various parametric configurations, and to give a conservative estimate of the
loss factors for the higher modes. Figure 12 shows the NASTRAN calculated
strain energy in the VEM vs. VEM thickness. Constraining layer thickness and
test article total weight as calculated by NASTRAN are cross plotted. The
point chosen for the design is circled. The hat section was designed to meet
the static deflection requirements of criterion III and the final choice of
stiffener, VEM, and constraining layer was checked to ensure the satisfaction
of the total deflection requirements. The calculated loss factors are plotted
vs. frequency for modes up to 500 Hz. in Figure 13. Results for a temper-
ture range of 60° F to 700 F are presented. Values for each temperature were
determined from a single NASTRAN run using the shear modulus at the fundamental
frequency and are therefore conservatively low in both frequency and loss fac-
tor for the higner modes. A more detailed model than the coarse one shown in
Figure 11 would be required to accurately calculate loss factors for the higher
modes, but since it was decided that the honeycomb stiffener panel would be
used for the modal test and the analysis correlation tasks, a larger model was
not justified. The more coarse model is adequate for determining the loss fac-
tor of the lower modes and performing the parametric analyses to determine the
design point.

3.0 BEAM ELEMENT FABRICATION AND EXPERIMENTAL EVALUATION

Several beam elements of candidate stiffener designs were fabricated and tested
ted to (1) verify fabrication methods planned for panels and (2) verify analy-
tical predictions of performance. ISD112 and several GE-SMRD VEM's were used
in a honeycomb sandwich configuration and in several hat stiffened configura-
tions with unidirectional graphite-epoxy constraining layers. Results indicated
ISD112 was not suitable for the stiffener configuration because of low bond
strength. The SMRD materials were found to provide maximum performance close
to room temperature but were slightly off on either the high or low side. Test
results agreed reasonably well with analytical predictions using NASTRAN modal
strain energy methods. Material properties appeared to be a major source of
analysis error. Temperature was highlighted as the key variable effecting
damping performance. These beam element tests are discussed in this section.

3.1 CANTILEVER BEAM ELEMENTS
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3.1.1 TEST CONFIGURATIONS

A cantilever beam specimen was designed and fabricated to provide an early
evaluation of candidate configurations, a preliminary correlation of analysis
predictions with measured damping performance and identify unanticipated fab-
rication problems. The beam test article is shown in Figure 14. The honeycomb
sandwich configuration was the lightest weight design using graphite epoxy
(G/E) face sheets with thicknesses selected to provide inherent structural
stiffness corresponding to criterion III. Honeycomb face sheet thicknesses
were selected to maximize damping as discussed previously. Steel bars bonded
to the bottom surface of the beam provided transverse stiffness and increased
the weight so that the resonant frequencies would be in the range of panel
designs. SMRD 100F90 material of 1/4 inch thickness was found to approximate
the desired damping and is of the thickness used in other spacecraft applica-
tions. The beam width was abritrary. The aluminum thickness simulates the
stiffness of the DSCS III magnesium panel.

The initial viscoelastic material selected for the honeycomb sandwich was
ISD112 with a 10 mil thickness. This material uses a pressure sensitive adhe-
sive and was found to come loose as a result of surface irregularities in the
honeycomb pieces. This problem combined with concerns as to the bond strength
in this stiffener application resulted in a change to SMRD 10OF90. The
The SMRD 100F90 uses a structural adhesive (HYSOL EA9309.3) known to exceed the
VEM shear strength.

3.1.2 ANALYTICAL PREDICTIONS

A NASTRAN model of the Honeycomb cantilever beam configuration was used to
estimate the damping and fundamental resonant frequency using the Modal Strain
Energy method (MSE). The model was relatively coarse as shown in the SUPERTAB
plots of Figure 15. The beam was divided into 10 spanwise segments and 7
crosswise segments using a single row of elements to represent the stiffeners
and has 219 nodes. CQUAD4 elements were used for the aluminum baseplate and
the honeycomb face sheets. The VEM and honeycomb core were modeled using
CHEXA elements. Offsets were used in the CQUAD4 elements adjacent to the
CHEXA elements so that common nodes could be used between the elements while
simulating the neutral axis position. The steel bars were modeled using CBAR
elements with offsets. All nodes at the cantilevered end were fixed which rep-
resented the interface with the test fixture, i.e. all DOF's at the end nodes
of the plate, stiffener, VEM, and constraining layer. The model was reduced to
52 ASET DOF's of which approximately two-thirds were in the out-of-plane direc-
tion. The full mass matrix was calculated by NASTRAN using material densities
for the various elements. A model check was made for the fundamental mode by
increasing the number of nodes and dynamic DOF's by approximately 4; however,
the much finer model results did not differ significantly from the coarse mod-
el. The Young's modulus for the G/E elements was 30E6 psi based on a 60 per-
cent fiber volume fraction. The shear moduli for the honeycomb core were 135
Ksi and 54 Ksi representing the nominal value for 1/8-5052-.002 core material
provided by Hexcel. The shear modulus of the viscoelastic material was varied
over a range of values to determine the fundamental mode resonant frequency and
loss factor as a function of temperature.
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The analytical prediction of the fundamental resonant frequency and loss fac-
tor as a function temperature were determined by combining the NASTRAN results
with the SMRD 10OF90 properties displayed as a function of reduced frequency.
The procedure is shown graphically in Figure 16. The VEM shear modulus, G, was
varied in the NASTRAN analysis and the fundamental resonant frequency deter-
mined and plotted. The percent of modal strain energy in the VEM was also
determined and plotted in the Figure. A resonant frequency was selected and
the value of G determined from the NASTRAN results as indicated by Step 1.
Using these values for F and G, the corresponding temperature is uniquely de-
termined as shown. This also determines the VEM loss factor as indicated in
the figure. The VEM loss factor and the NASTRAN modal strain energy are then
combined as described previously to determine the composite loss factor. This
procedure is repeated for various frequencies providing the analytical predic-
tion of resonant frequency and composite loss factor as a function of tempera-
ture. The analytical results for the cantilever beam are shown in Figure 17.

The analytical results were determined using two different sets of material
properties. The properties of SMRD10OF90A have been determined by three dif-
ferent laboratories. Although the approaches used by each were similar,
differences exist in the final properties. Two Reduced Temperature Nomographs
are shown in Figure 18. The basic nomograms differ in shift parameters preclu-
ding direct comparison. The shear modulus and loss factor data from these two
nomograms were used to define the properties at a temperature of 65 F and
plotted vs. frequency in Figure 19. Also included is a third set of data mea-
sured from the same batch of VEX that was used for the Lab B measurements. The
Lab A and Lab B measurements were both performed with sandwich beams and the
data reduced with different aT relations and different To constants. The Lab
C measurements were obtained from a modified Oberst beam and reduced with the
same aT relation that was used for the Lab B data reduction, but with a dif-
ferent To.

It is apparent from the three curves of Figure 19 that more research should be
be performed on VEM measurement and data reduction methods. There is consid-
erable scatter in the raw data through which these curves were faired, and the
choice of constant To in the temperature shift relation mT is of great impor-
tance. Analyses were performed using the two reduced temperature nomograms and
results were compared with test results.

The accuracy of these analytical predictions depends on. the accurate modeling
of the overall structure as well as the accurate representation of the VEM
properties. Inherent in the procedure is the assumption that the model without
the VEX accurately predicts the structural behavior. If the model of the non
VEM structure is too stiff, then the analytical predictions will require a
lower VEM shear modulus to match the measured resonant frequency. This will
ultimately result in an apparent shift in the analytic results to a higher
temperature. Similarly, higher strain energy in the non VEM structure will
cause the analytical composite loss factor to be low. On the other hand,
inaccuracies in the VEM properties could cause the analytical predictions to
vary in either direction. When correlating analytical and experimental re-
sults, structural model error sources should be kept in mind and the overall
difference should not be attributed solely to the VEM modeling.
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3.1.3 EXPERIMENTAL RESULTS

The cantilever beam was tested using base excitation and circle fit techni-
ques to accurately determine the resonant frequency and damping. The beam was
clamped over a two inch span at the root and bolted to a Team Hydrostatic
Table which was driven with an MB C-150 shaker. Three accelerometers were
mounted to the tip of the beams to determine the phase and amplitude of the
beam response. A single reference accelerometer was mounted to the vibration
table to measure the input. The beam was excited sinusoidally. :The acceler-
ometers were recorded on magnetic tape and processed through the HP5423A
Dynamic Analyzer. The analyzer determined the resonant frequency and damping of
the beams at the fundamental resonance using a circle fit to the response with
the input acceleration used as a reference. Because the fundamental mode was
well separated from other resonances, this technique provided an accurate esti-
mate of the loss factor and resonant frequency. The measurements were repeat-
able within approximately 1% and are not subject to inaccuracies associated
with bandwidth measurements. Initial tests at input levels varying from 1/2 to
2 g's indicated that non-linear effects were small compared to temperature ef-
fects. Tests were subsequently performed with a single input level.

A crude method was used in these initial tests to vary temperature. The ori-
ginal intent was to test the beams only at room temperature. However, as the
tests progressed, it was evident that the temperature should be varied to pro-
vide adequate data to evaluate the damping performance. This was accomplished
by varying the room air conditioner setting to obtain low temperatures and
using heat lamps to obtain higher temperatures. A thermocouple was taped to
the VEM portion of the beam to determine the test temperature. Using these
techniques, the temperature varied from approximately 55* to 1000 F. The test
results are shown in Figure 17.

3.1.4 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

The experimental results for the honeycomb sandwich beam cover a relatively
wide temperature range and indicate reasonable agreement with analytical pre-
dictions but with an apparent temperature shift. The measured fundamental
resonant frequency varied from 204 to 124 Hz which compares favorably with
analytical variations from 209 to 118 Hz. There appears to be a 4 to 8 degree
F shift in the resonant frequency curve but this could be caused by under-
estimating the cantilever beam stiffness (e.g. the analytical shear stiffness
of the honeycomb was lower than actual). This tends to be substantiated by the
asymptotic values. A similar shift in the temperature of maximum damping is
also evident. The maximum measured loss factor is within 1 to 17 percent of
predicted. The difference in the VEM properties obviously has a major effect on
the accuracy of the analytical predictions.

The results of these initial tests indicated the need to obtain more detailed
test data to evaluate performance and .u consider other damping materials.
The temperature was identified as a key parameter to correlate test and analy-
tical results. A wide, well controlled temperature variation is needed to
provide data on the analytical adequacy by checking both glassy and rubbery
asymptotes, with more accurate measurements in the transition region. A test
of the basic undamped structure would be helpful to verify analytical model
accuracy. The observed peak damping was above the temierature range of inter-
est indicating peak performance would require a different VEM material. Some
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of the differences between test and analysis can be attributed to the uneven
temperature distribution in the test article caused by the heat lamps.

3.2 END SUPPORTED BEAM ELEMENTS

Following the tests of the cantilever beam specimen, two end supported beams
were fabricated and tested. The objective of these tests was to obtain better
analytical correlation by using end supported test articles and by using a
thermal chamber over the shaker so that the temperature could be controlled
more accurately. In addition, one beam used SMRD 10OB50 which has a lower tran-
sition temperature than SMRD 10OF90.

3.2.1 TEST CONFIGURATIONS

The end supported beam test configurations are shown in Figure 20. The beams
consisted of a 10 inch wide by 17 inch long 1/8 inch aluminum plate. Five
steel bars were bolted and bonded to the plate to provide chordwise stiffness
and beam resonance in the frequency range of interest. A single half inch wide
hat section was riveted to the center of the beam simulating a criteria III
stiffener. The viscoelastic material was bonded to the stiffener and a con-
straining layer of G/E with uniaxial fibers was bonded to the VEM. The VEM
layers were 1/4 inch thick SMRD 100F9OA and 0.10 inch thick SMRD 10OB50C. The
beam was bolted with washer stand-offs to aluminum bars which were attached to
the 30 inch diameter head of an MB C-220 shaker. The end supported configura-
tion was fe~t to be more readily analyzed than the cantilever arrangement used
in the initial tests. The entire shaker head was enclosed in a small thermal
chamber which contained a heater, a blower and a thermostatic control. Liquid
CO2 was vented into the chamber to cool the test article below ambient tempera-
tures. Thermocouples sandwiched within a block of SKRD and attached to the
outside of the block were used to determine when the temperature of the test
article had stabilized.

3.2.2 ANALYTICAL PREDICTIONS

The analyses of the end supported beams were performed using NASTRAN and the
MSE method described for the cantilever beam. The SUPERTAB plot of the FEM is
shown in Figure 21. The model was finer than that used for the cantilever spe-
cimens having 18 elements in the spanvise direction and 9 elements chordwise.
The model used CQUAD4 elements with offsets for all but the steel bars and VEM.
The steel bars were modeled using CBAR elements with offsets. The VEM was
modeled using CHEXA elements as in the cantilever model. The modulus of the
VEM was varied in the NASTRAN analysis and the final results presented as a
function of temperature using material property curves as described previously.
An additional analysis was performed for the bare beam without the VEM to
correlate with test results.

The analytical predictions for the hat stiffened beam are shown in Figure 22.
The resonant frequencies of the first three modes are shown for both simply
supported and clamped boundary conditions. Because of the dependance of the
VEM model on that of the model for the basic stiffened beam, analysis and
testing of this configuration was performed. The analytical results for the
two damped beam configurations are shown in Figures 23 and 24 for tite 1/4 inch
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SMRD 10OF90 and for the 0.10 inch SMRD 100B50 respectively. For the SMRD
10OF90, analytical results are presented for both Lab A and Lab B material pro-
perty data. For the SMRD1OOB5O, only one set of material property data was
available.

3.2.3 EXPERIMENTAL RESULTS

The experimental results are shown in Figures 22 to 24 for the various test
conditions. The tests were performed in the same manner as the cantilever tests
except that the MB C-220 shaker was selected because of its larger head dia-
meter. The major change in the procedure was the use of the thermal chamber
over the test article which improved the accuracy and range of test tempera-
tures. The instrumentation consisted of three response accelerometers: two
at midspan at the center and edge and one at quarter span in the center. The
input was measured at one end of the beam. The response at the center mid-span
was circle fit to measure the fundamental resonant frequency and damping. The
other midspan accelerometer was checked for torsion which was found to be neg-
ligible at the fundamental resonance.

3.2.4 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

The first step in correlating the analysis and test results was to compare
the resonant frequencies of the basic undamped beam, Figure 22. This was done
by plotting the ratio of the analysis to the test frequency for the first three
bending modes. This comparison showed that there is excellent agreement in the
fundamental resonant frequency when the analysis considers the beam to be
clamped at the bolt attachments. There are, however, significant differences
in the second and third resonant frequencies which were closer for pin con-
str:.nts at the bolt attachments. In the interest of expediency, the results
were considered satisfctory for analytical predictions of fundamental mode res-
onant frequency and damping. The decision was made to proceed but to limit
comparisons to the fundamental mode only.

The analytical results for the beam with the 1/4 inch SMRD 100F90, Figure 23
agree reasonably well with test results for resonant frequency and temperature
of maximum damping when Lab A material properties are used. Using Lab A mater-
ial properties, the calculated temperature of maximum damping, 77* F, agreed
with the test within measurement accuracy with less than 5 percent difference
in the corresponding resonant frequency. The maximum damping, however, was 34
percent higher than measured. This agreement was considered to be partially
the result of the accuracy of the beam-stiffener model which agreed within 2
percent of the measured resonant frequency. Using the Lab B material proper-
ties, the calculated temperature of maximum damping was approximately 77° F
which was the same as predicted using Lab A properties. The analytical reso-
nant frequency also agreed reasonably well. However, the maximum calculated
damping was 21 percent higher than measured.

For the beam using the SMRD 10OB5OB, the analysis results agreed fairly well
with measured values although only one estimate of material properties was
available, Figure 24. The resonant frequency closely follows the measured
values but shows a higher calculated asymptotic value at high temperature; this
indicates a higher analytical stiffness of the basic beam than actual. The
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temperature of maximum damping was 6° F lower than measured with the maximum
calculated damping about 30 percent higher than measured. The resonant fre-
quency of maximum damping agreed closely.

The summary of the beam test data is given in Table 3 and Figure 25 comparing
the maximum loss factor and the corresponding temperature and resonant fre-
quency. The maximum loss factor appears to be the most error prone with 30
percent variations between analysis and test. Calculated resonant frequencies
and temperatures at the maximum damping point are generally within 15 percent
and 30 F, respectively. The table indicates a high sensitivity of results to
material properties. It will be noted that modeling errors of the basic
stiffened beam are included in the calculations and the variations should not
be considered to be solely VEM associated.

4.0 PANEL MODAL TESTS

4.1 TEST DESCRIPTION

The general arrangement of the modal tests is shown in Figure 26. The two
test panels were the undamped baseline panel and the lightweight honeycomb con-
figuration with a quarter inch layer of SMRD 10OF9OB between the inner aluminum
honeycomb stiffener and the outer graphite epoxy honeycomb constraining layer.
Each test panel had the simulated TWT'S installed and was bolted to a test
frame along its four sides. The frame, in turn, was bolted to a massive rigid
base. The frame had numerous openings machined around it to permit air to flow
into the opening between the panel and the base fixture. (Initial tests indi-
cated that the air trapped between the panel and the mounting base stiffened
the test panel. After the openings were machined into the frame the fundamen-
tal panel mode was found to drop to nearly half the original test frequency.)
A single Unholtz Dickie 50 pound permanent magnet shaker was attached to one of
the TWT's through a flexible stinger which contained a piezoelectric force
transducer and accelerometer at the TWT attachment end. The shaker was attach-
ed at the outer edge of one TWT for tests of both the baseline undamped panel
and the damped panel. For the damped panel, a second shaker attachment at the
center of the middle TVT was also used. Analytical predictions prior to per-
forming the test indicated that these locations would effectively excite the
modes of the panel below 300 Hertz. The shaker was suspended from a bungee
sling attached to an overhead crane that could readily be positioned to align
the shaker with the panel.

The instrumentation for the undamped baseline panel was limited to three accel-
erometers while 14 accelerometers were used for the damped panel. All of the
accelerometers measured vibration normal to the panel except for two accelero-
meters mounted to the top of the center TWT on the damped panel. While a sin-
gle accelerometer at the top center of each TWT measured the undamped panel re-
sponses, four accelerometers mounted at the bottom corners of the TWT's were
used to measure the out of plane TVT1 response on the damped panel. The temper-
ature of the damped panel was measured with a thermocouple attached directly to
the viscoelastic material.
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A portable air conditioning unit was used to control the temperature by direc-
ting a flow of cooling air over the test panel. Data were obtained at 70" F.
Endevco 2213 accelerometers and a Krystal force transducer were used to mea-
sure the response and excitation. Previous tests have shown negligible phase
shifts between the transducers at frequencies above 5 Hz.

A pure random shaker excitation was applied over the frequency range from 20 to
500 Hertz. The force Power Spectral Density had a 6 dB/octave roll-up to im-
prove the response signals in the higher modes. The transducer signals were
analog recorded using a Spectral Dynamics multiplex system and played back for
subsequent modal data processing. A shaker force of 8 pounds RMS was used to
excite both the undamped and damped panel. The force amplitudes were arbitrar-
ily selected to provide adequate response measurements.

The data were reduced using an HP5451B Fourier Analyzer with a University of
Cincinnati (UCMIE) software package. The analog data were digitized and trans-
fer functions generated using the Analyzer. The coherence was checked to
assure accurate transfer function definition with zoom analysis performed to
improve accuracy where needed. A typical transfer function is shown in Figure
27 and indicates the coherence was very close to unity in the resonant fre-
quency range. Adequate frequency resolution was provided for both the undamped
and damped panels. The UCMIE software option used for extracting modal para-
meters was the Least Squares Multi-Mode curve fit routine. This was necessary
because of the large amount of modal overlap in the heavily damped modes as
well as those panel modes which had closely spaced resonant frequencies. The
mode shapes determined from the transfer functions were transferred by digital
tape to the large mainframe computer for comparison with analytical predic-
tions. Because of the limited number of measurements, the dot product between
the test and analysis modes was used for comparison.

4.2 ANALYSIS TEST CORRELATION

The first seven out-of-plane analytical modes of the undamped panel with fixed
edges are compared with the test results in Table 4. The modal dot products
were calculated using only the Z motions normal to the panel for both the test
and analysis modes. The dot products show good agreement between analysis and
test mode shapes with those modes dominated by Z motion having values greater
than 0.9. As would be expected, the agreement is not as good for modes having
a large amount of rocking or X and Y motion. The resonant frequencies agree
with test values to within approximately 10 percent. The test panel was
bolted directly to the base plate at all locations which should have given it a
nearly fixed boundary condition. The test loss factors were on the order of
0.03 or less showing the baseline structure to have relatively little damping.

The analytical predictions for the damped honeycomb panel are compared with the
test results in Table 5 for a temperature of 70'F. The analysis is based on
fixed boundary conditions along the four panel edges. As indicated in the
Table and shown graphically in Figure 28, the resonant frequencies of the first
four out-of-plane modes agree with test values within approximately 10% while
larger errors are apparent in the higher modes. The coarseness of the NASTRAN
model is believed to contribute to this error; however, it is apparent that the
error in the resonant frequencies of the two highest modes are significantly
greater than the error in undamped pane. analysis. The model dot products are
compared in Figure 29 and show good agreement with only two of the damped panel
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modes showing values lower than those of the undamped panel. The ratio of the
measured to calculated loss factors is shown graphically in Figure 30. The
comparison indicates that the calculated values tend to be less than the mea-
sured values but that the measured values are generally greater than two-thirds
of the calculated values. The earlier element test results gave similar re-
sults with the agreement between calculated and measured loss factors being
closer when maximum values were used. Subsequent panel tests using the base
excitation method were performed over a wider temperature range to better cor-
relate the analysis and test results.

The damped panel was excited sinusoidally by exciting it through its base using
the MB C-220 shaker. The temperature was varied from approxmately 608 F to
90° F using the portable thermal chamber. The measured response was analyzed
digitally using an HP5423A Fourier Analyzer to provide circle fits to the
measured response. The input acceleration was used as the reference. Because
of the overlap of the modal responses, circle fit results were only obtained
for the fundamental mode. The results shown in Figure 31 agree with the pre-
vious test results and indicate that a maximum loss factor of 0.27 occurs at
approximately 770 F. This is in closer agreement with the analytical predicted
value of 0.35 but is shifted to a higher temperature.

The results of the modal test verify that a large amount of damping can be
introduced into the panel with the damped honeycomb stiffeners. Although the
maximum measured loss factors are less than the predicted values, the values
agree within approximately 30 percent. The test results indicate that another
viscoelastic material having a lower transition temperature would be more
effective in damping the panel.

5.0 CONCLUDING REMARKS

Damped DSCS III Transponder equipment panel designs were developed using con-
strained layer viscoelastic materials (VEM's) on the panel stiffeners. Al-
though preliminary studies indicated integrally damped honeycomb panels would
be lighter and more effective, the damped stiffener design was selected because
of thermal constraints caused by the high heat dissipating TWTA's. By using
design criteria that accounted for the load reduction achieved by the damping,
the weight impact was limited to 2 to 10 percent of the structural weight for
the highly damped panel final designs. NASTRAN finite element analyses using
Modal Strain Energy were used to systematically examine structural and VEM
parameters to optimize the design. The VEM properties were represented with
reduced frequency nomographs.

Reasonable agreement was obtained between analytical predictions and experimen-
tal results. Frequency and temperature were shown to govern the damping and
resonant frequencies of VEM panel designs both analytically and experimentally.
Analytical and measured modes shape agreement for the damped panel was nearly
comparable to that of the undamped panel based on the dot product comparisons.
There appeared to be shifts in the predicted temperature of maximum damping on
the order of 3 to 10 degrees F. The resonant frequencies of the first seven
panel modes agreed with analysis prediction within about 12 percent which was
comparable to the agreement for the undamped panel. The maximum measured loss
factor was within approximately 30 percent of analytical preditions with some
values showing negligible variation. At specific temperatures, the measured
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loss factors were on the order of one half to two thirds of analytical predic-
tions for the final panel design. Material property variations were shown to
have a major effect on analytical predictions and could account for most of the
differences between analysis and test results. Boundary conditions and inac-
curacies in the finite element model of the basic structure also contribute to
the test/analysis difference.

Large reductions in resonant magnifications were achieved with the damped stif-
fener designs. The first mode magnification measured on the undamped baseline
parel was 26. The constrained layer damper design of the damped modal test
panel reduced this 0 of 26 to only 4.3 at the temperature of the modal test,
(70" F) and to 3.7 at the temperature at which the peak loss factor was found
during subsequent temperature sweep testing. These values compare to the 0 of
3.0 which was calculated using NASTRAN MSE with VEM properties determined from
a reduced temperature nomogram.

Subsequent acoustic test results showed that the damped panels were highly
effective in reducing the random vibration environment. The initial goal of
6 dB reduction in the PSD was exceeded in the low frequency range by a large
amount.

The results of this study demonstrate the effective application of visco-
elastic material technology to the design of equipment panel structure.
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Fig. 14 Cantilever beam test element

Fig. 15 NASTRAN model honeycomb stiffened panel
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RELSAT DAMPED EQUIPMENT PANELS - FABRICATION*

K. SCHMIDT, F. CURTIS, E. MUZIANI, L. AMORE

GENERAL ELECTRIC SPACE SYSTEMS DIVISION
VALLEY FORGE SPACE CENTER

P.O BOX 8555, PHILADELPHIA, PA 19101

ABSTRACT

This paper discusses the material considerations and fabrication methods used
in the GE RELSAT program and describes the technology needed to produce
viscoelastically damped spacecraft equipment panels. Tests of the panels
presented elsewhere in these proceedings indicate the damping is predictable
and highly effective in reducing the vibroacoustic environment of electronic
packages. The materials technology described herein builds on more than 15
years of GE experience in damping spacecraft electronic packages and other
devices using a SMRD 100 viscoelastic epoxy. Material requirements are driven
by prelaunch thermal vacuum testing, launch temperature of 60 to 72 degrees F,
launch vibration frequency of 50 to 500 Hertz, and the need to survive 10 years
in orbit without contaminating the spacecraft. GE SMRD 100 materials were
selected that satisfied these requirements and were known to maintain their
excellent damping properties after 4 years in orbit. Modulus and loss factor
of candidate materials are compared at the temperature of interest for
frequencies from 10 to 10,000 Hertz. Standard panel fabrication methods are
used except for viscoelastic material (VEM) machining which uses diamond
tooling. Quality control methods needed to assure panel structural integrity
and damping performance rely on X-ray and and ultrasonic techniques to evaluate
bonding and resonant beam measurements to determine material properties.
Alternate fabrication methods that eliminate some bonding operations are
presented. Because current measurements of VEM properties have a large
variation, it is recommended that improved methods be investigated. Improved
property measurement should address experimental errors, relations used to
derive properties from test measurement, derivation of the reference
temperature used in the shift relation, and VEM formulation controls that
assure uniform properties.

*This work was performed for the Air Force Flight Dynamics Laboratory under the
RELSAT (Reliability for Satellite Equipment in Environmental Vibration)
Contract.
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INTRODUCTICN

This paper presents the material considerations, basic fabrication techniques
and quality control measures criftical to the fabrication of damped spacecraft
equipment panels. In conjunction with this paper, two others have been
written, which address the design and testing of Dynamic Test Article (DTA)
Panels.".2 The purpose of this effort, is to demonstrate the use of viscoelastic
damping to reduce vibroacoustic environments for satellite equipment mounting
structures in a launch environment. Research, testing and subsequent
evaluation have shown that the technology and material resources are available
to fabricate and implement constrained layer damping on spacecraft structures.

BACKGROUND

The formulation and application of viscoelastic materials in spacecraft has
been under development at GE-SSD for over 15 years. SMRD (Spacecraft Materials
Research and Development), a highly efficient damping compound developed by GE,
was first flown on Landsat I Earth Observation Satellite where avionics
reliability was enhanced by limiting relay panel vibrations. 3 Subsequent
applications include Viking Lander, Acoustic Cannisters, Gimbals, and Camera
Mounts.4 In addition, it is used extensively on printed circuit boards,
providing efficient damping and additional stiffening of the boards and/or
components. Figure 1 shows a typical constrained layer damping strip
installation. The board has a center strip extending from the edge to the
connector and an additional strip bonded to the connector. A minimum amount of
space is occupied by the strips which use unidirectional graphite epoxy
constraining layers.

The constrained layer fabrication is shown in Figure 2. The constraining
layers are bonded to the viscoelastic material (VEM). They are then machined
to the final dimensions. Typical damping strips using SMRD 100F90 with
unidirectional graphite epoxy constraining layers are shown in Figure 3 and can
be made in a wide variety of shapes and sizes. Sizes range from a few inches
to a few feet in length. The DSCS III spacecraft uses approximately 2000
damper strips. Most use unidirectional graphite epoxy constraining layers.
The keel member shown in Figure 4 employs the use of a large damper strip to
limit vibration levels so that vibration of adjacent packages stays within
specified limits. This 'keel damper was added after acoustic tests indicated
package qualification random vibration levels were being exceeded.

Currently, the concept of viscoelastic damping is being evaluated in relation
to reducing vibroacoustic environments for satellite equipment mounting
structures during launch. To date, testing has been conducted which has shown
the damping to be highly effective in attenuating vibroacoustic response. In
addition, the structural integrity of damped panels under static load,
sinusoidal load and creep effects under steady state load were measured. The
results of acoustic and shock tests, and the design, analysis and modal tests
are presented in two other papers included in the proceedings.,2This paper
discusses the viscoelastic material requirements and properties, material
selection, fabrication methods and quality control procedures.
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RELSAT PANEL DESIGN APPROACH

The approach used in the design of the damped panel configuration is shown in
Figure 5. The original panel design provided integrally machined stiffeners
with riveted flange sections to support the panel components. The damped panel
design uses a similar concept with a constrained layer damper added to the
flange section. Although the figure indicates the same size stiffener, the
damped panel designs actually used smaller stiffeners using the VEM and
constraining layers to provide added stiffness. With this concept, the thermal
design of the panel is unaffected. Heat is conducted through the panel
structures and the VEM effect is negligable.

MATERIAL CONSIDERATIONS

Requirements

Key requirements to be considered when selecting damping materials for
spacecraft applications include space compatibility, weight, strength,
stiffness and high damping in the frequency and temperature range of interest.
These requirements are summarized in Table 1 for the various flight phases.
Prior to launch, the material is subjectei to thermal cycling for an extended
period of time during subassembly and spacecraft tests. In addition, a storage
capability of 2 years is also required. The launch conditions are critical for
the damping performance of the material which requires high damping from 60 to
72 degrees F in the 50 to 500 Hertz frequency range. High shear strength is
required so that structural integrity is assured. A wide range of stiffness
values are acceptable although they influence the thickness of the damping
layer. During orbital flight, the VEM must not contaminate the spacecraft
during its 10 year life. This is reflected in the outgassing requirements of
ASTM E-595 which requires less than 1 percent mass loss and less than 0.1
percent collec.4ble Volatile Condensible Materials under elevated temperature
and vacuum conditions. By selecting the dampened panel stiffener approach,
thermal conduction requirements are precluded.

Candidate Materials

The properties of candidate materials are compared in Table 2. The material
density varies from .028 to .066 pounds per cubic inch which affects the weight
but is not critical because of the small amount of material used. The
outgassing results, however, do eliminate the AF32 (SMRD 10OF90A is an
acceptable material although it slightly exceeds the outgassing values).

Aging Effects

It is imperative that materials used on the spacecraft withstand the thermal
vacuum conditions imposed without changing stiffness and damping properties,
i.e. stability of the viscoelastic material properties is essential. In
addressing this requirement, SMRD panels are post cured under vacuum for 96
hours as a stabilization process. To verify the stability of GE developed
SMRD, recent events have enabled an evaluation of SMRD following four years in
space. The Solar Max Attitude Control Module launched in February of 1980 and
retrieved from space in April of 1984, used SMRD in its interior structure. A
sample recovered from the Attitude Control Electronics (ACE) package was tested
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and found to have retained high damping properties after four years in space.
Figure 6 compares SMRD 100F90 retrieved from space to standard SMRD 10OF90
data. The individual data points shown for the SMM material were obtained from
modified Oberst beam tests. The curves correspond to the original material
before extended space exposure. The comparison indicates that the properties
have not changed significantly. A maximum loss factor of approximately l.V was
measured for the SMM material. This value is in close agreement with the
maximum value for the corresponding curve. The data verify the stability of
the SMRD material. Similar data are not available for the other materials in
Table 2.

Damping and Stiffness Properties

This section addresses material characterization of VEM damping and stiffness.
This information can be readily displayed on Reduced Temperature Nomograms
(RTNs). Past research has shown that there is a definite correlation between
many rheological materials in regard to behavioral similarities at different
temperatures and frequencies. Measurements of the stiffness, E or G, and loss
factor, 7 , as a function of frequency for various temperatures can be
obtained. Using a shift parameter, aT , and the data derived above, stiffness
and loss factor information at various temperatures can be collapsed into a
single curve. As a result, modulus and loss actor can then be plotted as two
curves on a Reduced Temperature Nomogram. This is illustrated in Figure 7.
Ultimately, this nomogram can be used to determine material properties for the
temperature and frequency of interest in a particular application. Figure 7
illustrates modulus and loss factor data at an average temperature of 65
degrees F, the temperature of interest, for various frequencies. Because the
RTN includes the shift parameter which is material dependent, material
comparisons and selections must be made using the material property curve shown
on the right of Figure 7 which is- independent of the temperature shift
relation.

The accuracy of the material property measurements are also indicated by the
individual data points in Figure 7. The temperature shift relations can be
used to translate the properties from the RTN to the material properties at a
specific temperature, including the curves and the original data points. The
scatter in the data points provide an indication of the accuracy of the
property measurements. Although the scatter appears small on. the three cycle
log scale, the scatter is relatively large with factors of two or more for many
points. The scatter is particularly large for the loss factor.

In essence, the goal in searching for a good damping material is to find one
whose high damping properties coincide with the temperature and frequency
ranges of interest. In the specific case of DSCS III launch environment, the
temperature and frequency ranges of prime importance for the North Panel
Structure are 60 to 72 degrees F and 50 to 500 Hertz, respectively. In an
attempt to attain the required stiffness and damping under these conditions,
material formula variations were researched and tested. One way to evaluate
the difference in damping properties between the material candidates is to
compare them in relation to glass transition temperature. Modifications were
made to the standard material in an attempt to shift the transition
temperature, so that peak damping would occur in the desired temperature and
frequency range. Figure 8 shows that SMRD material properties can be altered
to meet specific requirements. Of the three materials shown in this graph,
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SMRD 10OF90C performed ideally for the RELSAT application. Peak damping
occurred for about 50 to 500 Hertz at 65 degrees F.

In addition to the GE-SSD material formulations, commercial damping materials
were investigated. Two materials selected for initial evaluation were DYAD 601
and 3M ISDl12. Both materials satisfy the outgassing requirements, however, at
65 degrees F the peak damping for DYAD 601 was at a frequency above the range
of interest for the DSCS III panel. Measured material properties from beam
tests are shown in Figure 9. In addition, ISD112 properties were also
measured, Figure 10. It appeared to be too soft, and required very thin layers
to be effective. It did not have the required bond strength for the stiffener
aplication. UDRI 3 was also considered, but was rejected because its tacky
consistency posed fabrication problems and could cause contamination of the
spacecraft. The final selection of candidate materials for panel fabrication
and tests were four SMRD100 materials. The material properties are compared in
Figure 11. The four prime material candidates are described below:

SMRD 10OF90B is a modified 100F90 formulation which
has significantly better outgassing characteristics
and a temperature of peak damping closer to the
ranges of interest than the original formulation.
It is relatively stiff with a low density, and has
been used by GE-SSD for electronic packages.

SMRD 10OF90C is a further modification of 100F90,
fo-rmulated in an attempt to reduce the transitiion
temperature so that peak damping would occur in the
temperature and frequency ranges of interest.

SMRD 10OB5OA has the damping properties which appear
ieally suited for DSCS III transponder panel
application. The material loss factor is high over
a relatively broad frequency range and is nearly
unity over the frequency range of interest. It has
the same base resin system as 100F90, however it is
modified by the addition of a conductive filler.
The temperature of maximum damping at 100 Hertz is
63 degrees F and lies within the desired temperature
range.

SMRD 10OB50B - This is a modification of the
previous material which is stiffer. At 65 degrees
F, the frequency for peak damping is shifted to
about 200 Hz, and has high damping over the
frequency range of interest.

The decision to use the SMRD 100 materials was based on the fact that these
materials satisfy the outgassing, strength, stiffness and damping requirements
established. Refer to Table 3 for material selector parameters. In addition
past experience in viscoelastic damping facilitates the application of various
techniques used in damped printed wire boards to those for the damped
spacecraft equipment panels.
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DAMPED EQUIPMENT PANEL FABRICATION

VEM Fabrication Process

Both SMRD 10OF90 and 100B50 are cast and cured in teflon coated aluminum molds
in thicknesses ranging from 0.1" to 0.25". The sheets are stabilized and
outgassed under vacuum at 135 degrees C for 96 hours; see Figures 12 and 13.
The SMRD can be used as fabricated or milled to the desired dimensions. In the
past, an aluminum oxide cup wheel was used to mill the SMRD. Due to obvious
surface imperfections, diamond tooling replaced the former tool. Figure 14 is
a photograph of a diamond compax end mill used primarily for milling smaller
sections of VEM. The diamond flycutter shown in Figure 15 mills approximately
a two inch wide strip per pass as compared to 1/2 inch strip produced with the
end mill. This tool is used in larger applications.

Surface Preparation

Once the materials are machined to size, the SMRD can be bonded to constraining
layers such as aluminum and graphite/epoxy laminates. To obtain optimum bond
strength, an effective method of surface preparation is employed. The SMRD and
constraining layers are abraded using 100 grit Aluminum Oxide paper. All
surfaces are thoroughly cleaned with isopropyl alcohol and allowed to air dry.

Adhesive Selection/Bonding

Proper adhesive selection is essential in terms of space application. Once
again, outgassing requirements, in addition to strength under rigorous
environmental conditions are critical factors which must be considered. SMRD
10OF90 and 10OB50 can be bonded to both graphite/epoxy laminates and aluminum
using epoxy adhesives such as amine or polyamine cured epoxy resin. The
adhesive selected for this application was Hysol EA9309.3 commercial grade
aerospace adhesive. This material offered adequate strength and rigidity in
addition to being compatible with the materials under consideration.

Finally, the actual bonding of the SMRD to the constraining layers is a simple
procedure. A thin film of adhesive is applied using a fingerprint roller. The
materials are mated in such a manner as to preclude excessive air entrapment.
The bonded sections are then cured under pressure.

Two damped panel configurations were designed and tested, one incorporated
aluminum honeycomb stiffeners and the other aluminum hat section stiffeners.
Figure 16 is representative of the honeycomb stiffener panel prior to
completion. Aluminum honeycomb stiffeners are bonded to SMRD which will
subsequently be bonded to a graphite/epoxy honeycomb constraining layer.
Traveling wave tube amplifier (TWTA) mass simulators are bolted to the aluminum
panel. Figure 17 shows a completed honeycomb panel prior to test. The
aluminum hat section stiffener panel shown in Figures 18 and 19 consists of
aluminum hat sections riveted to the aluminum base plate. A viscoelastic
damping layer is bonded directly to the hat, followed by a graphite epoxy
constraining layer. TWTA mass simulators are then added for dynamic testing.

The method of damping used on these panels simulates the predicted effect of
constrained layer damping on the transponder panel of the DSCS III spacecraft.

JBD-6



FUTURE DAMPED PANEL FABRICATION

Looking into the future of constrained layer viscoelastic damping, a technique
has recently been developed to eliminate the bond between the voscoelastic
material, in this case SMRD, and the graphite epoxy laminate. Figure 20
compares the interfacial bonds between the VEM and laminate for adhesive and
direct bond methods.

The new procedure incorporates the bonding process into the layup of the
graphite epoxy laminate. As in the current process, the SMRD must be abraded
and thoroughly cleaned. The graphite/epoxy prepreg is then layed up directly
onto the surface of the SMRD sheet and cured under vacuum. The damper strip
assemblies can then be machined to required dimensions. The benefits of this
new procedure include improved bond strength, elimination of the bonding step
and surface preparation of the graphite/epoxy laminate and most importantly, it
virtually eliminates the possibility of interfacial voids because of high resin
flow from the graphite/epoxy prepreg and the high pressure under which the
composite is cured.

QUALITY CONTROL PROCEDURES

VEM Properties Confirmation

To validate the material properties of the SMRD, several tests were conducted.
Hardness, using a Shore A durometer measured the materials resistance to
indentation. It is a simple and effective means of monitoring changes in
material stiffness. Density was determined through weight and dimensional
measurement. Finally, to determine the damping properties of the viscoelastic
material, the modified Oberst beam method of test was employed.6 Specifically,
the beams consisted of an aluminum layer sandwiched between two pieces of
viscoelastic material. A series of beams were then mounted to a shaker and
excited using base excitation. Damping properties of the materials under
consideration, were determined over a wide range of frequencies and
temperatures.

Structural Assessment

In addition to material property confirmation, non-destructive testing to
determine structural integrity is critical. Delamination between the
constraining layers or panel and the damping medium could cause a significant
reduction in damping efficiency. As a result, it is important that
non-destructive inspection techniques be employed to insure structural
integrity. Three methods of test suggested are Ultrasonic Pulsed Echo
techniques, Ultrasonic Impedance Plane Analysis and Real Time Radiographic
Examination.

Ultrasonic and Contact Pulse Echo operates on the principle of pulsed
ultrasonic .aves.-THe waves are monitored as they interact with the material
being inspected. A pulse ultrasonic beam is introduced into the part and the
returning echos are monitored. This test method gives information regarding
the type, size, location and depth of the defect. Figure 21 illustrates the
difference between a bonded area and one with a known void. The large peak
present on-the photograph on the left is the back reflection of the aluminum

JBD-7



hat section. This peak diminishes when a voided area is contacted. Since this
signal will not transmit through air, the last material the signal detects is
the adhesive coated SMRD, signTfying a void or debond as indicated in the
photograph on the right.

Ultrasonic Impedance Plane Analysis using a Bonda Scope, is an alternate method
of Non-Destructive Eva-lation. The acoustical impedance plane method useq a
small probe co generate a standing wave across the material thickness. The
test frequency is selected to vibrate the laminate in such a fashion that the
response to bondline and anomaly size is enhanced. The standing wave, which
contains acoustical material information, affects the impedance value at the
material surface. This value is then transformed through the probe's acoustic
impedance into its electrical impedence. It is this electrical impedence which
is subsequently processed for display on the acoustic impedance plane. Figure
22 illustrates a typical setup, where a bonded area appears as a dot located at
the center of the grid and a non-bonded area shows up as a dot in one of the
four quadrants depending upon depth and location of the anomaly.

Radiographic Examination or X-Ray, is another technique used to evaluate
structural integrity. X-Rays are directed through the part being inspected and
monitored with a screen or film sensitive to X-rays. Figure 23 shows an X-ray
evaluation of a debonded area. Since a void will absorb fewer X-rays than a
non-voided area, a dark spot will appear. Radiography can be performed through
the thickness to detect anomalies or tangentially to detect delaminations.

CONCLUSIONS

As a result of this research and development effort, the following conclusions
are made:

* The necessary technology is available to fabricate
damped panel structures.

* Performance can be enhanced by altering material
formulation to conform to application
requirements.

0 Key outgassing requirements can be satisfied.

* SMM damping material retains high damping
properties after four years in space, verifying
material stability.

0 Standard fabrication methods can be used for all
operations except VEM machining.

* Quality Control Methods are availAble to assure
properties of the panel.

* The variation in measured VEM properties should be
reduced.

0 The VEM test method should be revised to reduce
experimental errors.
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* The VEM temperature shift relations should be
improved.

* Material uniformity should be maintained within
close tolerances.
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Table 1. VEM Requirements for DSCS III North Panel

PRE-LAUNCH
" COMPONENT/SUBASSEMLY THERMAL a SPACECRAFT THERMAL CYCLING

CYCLING

TEMPERATURE: -34 TO 71"C TEMPERATURE: -17 TO SOC
VACUUM: 108 TORR VACUUMs 10-' TORR
TlME 10 DAYS TIME, 25 DAYS

" STORAGE-COMPONENTS AS PART OP THE SATELLITE FOR 2 YEARS

LAUNCH

* TEMPERATURE (SHUTTLE SAY): 60 TO 72"F
* FREQUENCY OF HIGH DAMPING. 50 TO 500 Hz
SSHEAR STIFFNESS. 100 TO 1000 PSI

* SHEAR STRENGTHs 100 TO 10000 PSI AT 100 Hz

ORBIT

* SURVIVE ORBITAL ENVIRONMENT FOR 10 YEARS WITHOUT LOSS OF
STRUCTURAL INTEGRITY OR CONTAMINATING THE SPACECRAFT

* OUTGASSING PER ASTM E-SS4
- TOTAL MATERIAL LOSSz .1X
- COLLECTIBLE VOLATILE CONDENSIBLE MATERIALSs 40. 1X

e HEAT CONDUCTIONs NOT A CONCERN BECAUSE OF DESIGN APPROACH

Table 2. Candidate Materials

OUTGASSING PROPERTIES AT PEAK DAMPING

DENSITY VCM TUL LOSS TEMP (OF)
MATERIAL (LB/IN3 1 _ x G (PSI) FACTOR 0 250 Hz

IS 112 .034 .02 .68 140 1.2 89
DYAD 601 .04 .01 .37 2.3K 1.0 35
AF 32 .0382 .46 1.97 76K .9 84
UDRI 3 .034 .03 0.58 8K 1.0 62
SMRD 1OOF9OA .0285 .11 1.10 4.6K 1.0 98
SURD 1OOF9OS .0296 .08 .81 2.7K 1.0 86
SMRD IOOF9OC .0295 .05 .83 3.7K 1.0 71
SURD IOOBSOA .0613 .08 .57 4.1K 1.1 63
SURD 1005508 .0635 .10 1.17 4.2K 1.2 70
SMAD 1000SOC .0662 .05 .47 3.8K 1.0 74

Table 3. Material Selection

no 112
" LOW OND STRENGTH
" FABRICATION DIFFICULTY

DYAD 601
0 TEMPERATURE/FREOUENCY RANGE NOT MATCHED

AF 32
* EXCESSIVE OUTGASSING

UDRI 3
" FABRICATION DIFFICULTY (TACKY)
" CONTAMINATION

SURD 100
* PROPERTIES CAN BE ALTERED TO MATCH APPLICATION
" FAMLIAR WITH FABRICATION METHODS
" HIGH BOND STRENGTH
" GOOD OUT&ASSING REQUIREMENTS
* STABLE AFTER INITIAL VACUUM "BAKE OUT"

SMAD MATERIALS USE GE-SD TECHNOLOGY BASE
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Figure 1. Typical Damped Printed Figure 2. Constrained Layer
Wiring Board Damper Fabrication

Figure 3. Typical PWB Damper Figure 4. DSCS III Application
Strips to JLE Panel
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STIFFENER

DAMPED CONCEPT

Figure 5. RELSAT Damped Panel Design Approach

TEMPERATURE T DEG. F

10 3 10 6160 120 80 r40 0 1

10210514

10 44
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LACOS MODULUS 9 FREQUENCY
EAO LB/IN 3 l12 F (Hz)

10 X210 1

-02 1 10

102 10 110

10010 2 10410 6 10a10 10 10 1

REDUCED FREQUENCY FR Hz

GOOD DAMPING PROPERTIES AFTER 4 YEARS IN SPACE

Figure-6. Comparison of SMM and Current SMRD 1.'0F90 Properties
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REDUCED TEMPERATURE NOMOGRAM MATERIAL COMPARISON
OF SMRD10OF90 TEMPERATURE = 65F

LOSS SHEAR
FACTOR MOmLUS

ETA Lb/IN FRIUENCT

T1i Is 174. TEMPERATURE T OEG. F F Hft A

10160 120 0 40

10 a 50 - 11 10 10 n / ° .

S 0 A02 030.10

10'
1  

10 2I ,o
2102 ~lLJ 102 h.L o. I 1 .1.) I D4LJ1 0.01

1 
- 2  

10 2 0 1

10
0  

10
2  

4 
4  

10 a 10t 10 10
T

1

iEnDUEO FREQUENCY FR Ma

MATERIAL SELECTION MUST BE MADE USING
PROPERTIES AT TEMPERATURE OF INTEREST

Figure 7. Material Characterization

105 100FSOA

1OOF90B
10OF9OC

10 4  -000 G

PSIn

000010 3  n / 1.0

10OF908
10 2  LL L - - -LL I I 1,: 1111 1 1 ,111, 0.1

10 102 10 3  1 4

FREQUENCY (Hz)

GE MATERIAL PROPERTIES CAN BE ALTERED TO MEET SPECIFIC
REQUIREMENTS. SMRDIOOF90C IS IDEAL FOR RELSAT.

Figure 8. Effect of SMRD 100F90 Formulation Changes
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IT = 65*F)

PSI F0

10
3  .0.0 1101-n 0

FREQUINCY (Hal

ITHlE PEAK DAMPING FOR DYAD 601 IS ABOVE THE FREQUENCY RANGE
OF INTEREST. SMRD10OF90C COMES CLOSER TO DESIRED RANGE.

Figure 9. Comparison of SMRD 100F90 and DYAD 601

(T = 65*F)
log

100190

i 

1.0

IO12HAS A LOW MODULUS AND, CONFORMS TO RELSAT
ISD112 TEMPERATURE/FREQUENCY RANGEI

Figure 10. Comparison of SMRD 100F90 and ISO 112

(T =659F)

104~

PSI,

t0o4- 1.

11touac MHal

4 SURD MATERIALS WERE SELECTED FOR PANEL FABRICATION A TEST

Figure 11. Properties of Selected Materials at 65 Deg F
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* CAST AND CURED IN FLAT SHEETS

* STABILIZED AND OUTGASSED UNDER
VACUUM AT 1350 C FOr. 96 HOURS

* BONDED TO CONSTRAINING LAYER

" MACHINED TO FINAL DIMENSIONS

" BONDED TO STRUCTURE

Figure 12. VEM Damper Strip Fabrication Process

TEFLON COATED ALUMINUM MOLD
PHIOR TO CASTING CURED MATERIAL

Figure 13. SMRD Fabrication

Figure 14. SMRD 10OF90 Milled with a Figure 15. SMRD 10OF90 Milled

Diamond Compax End Mill With a Diamond Fly Cutter
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Figure 16. Honeycomb Stiffener Panel Figure 17. SMRD 100F90C Damped
Prior to Completion Honeycomb Stiffener Panel

Figure 18. SMRD 10OB5OC Damped Figure 19. Completed Hat Section

Hat Section Stiffener Panel Stiffener Panel
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GRAPHITE GRAPHITE

ADHESIVE

SMRODSR

Figure 20. Direct vs Adhesive Bonding of Graphite/Epoxy
Constraining Layer

BOND VOID

Figure 21. Pulsed Echo Ultrasonic Method for

Assessing Bond
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BONDASCOPE DETECTED VOID

Figure 22. Ultrasonic Impedance Plane Analysis

GRAPHITEIEPOXY LAMINATE

y~e LAYEr,

• ... ALUMINUM HAT SECTION

/ERTICAL HORIZONTAL MAGNIFICATION

Figure 23. Bond Evaluation by Real Time X-Ray
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Prediction and Measurement of
Damping of a Laminated Beam with a

Constrained Viscoelastic Layer

D. J. Segalman
Applied Mechanics Division I
Sandia National Laboratories

Albuquerque, New Mexico 87185
(505) 846-1899

Lt. Philip Reamy
Air Force Weapons Laboratory/ARBC
Albuquerque, New Mexico 87117-6008

(505) 844-2019

Abstract

Analytic predictions 1 for damped natural frequencies of a simple viscoelastic structure
are compared with measured values 2. The structure studied is an aluminum chan-
nel incorporating a constrained layer of highly viscoelastic polymer. The predictive
technique employs a general and systematic method for calculating damping and stiff-
ness matrices using only measured material properties and structure geometry. These
matrices are then used to predict the dynamic properties of the structure. This work
constitutes the first step in the experimental verification of the analytic method.

Agreement between the predicted and measured response of the structure studied is
very good, and indicating that the analytic technique used is a viable method for
modeling viscoelastically damped structures.

1The computational portion of this work was supported by Sandia National Laborato-
ries under contract to the U.S. Department of Energy (DE-AC04-76DP00789).

2The experimental portion of this work was funded under Laboratory Independent
Research Program 8722 of the Air Force Weapons Laboratory.
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1. Introduction

The Role and Importance of Damping

Viscoelastic damping is a traditional method of controlling vibration and noise in
structures and machinery. An example of this method of passive damping is the use of
high-loss grommets in the attachment of subsystems. More sophisticated applications
include the use of constrained layer damping treatments to reduce vibration in airplane
shells that had previously suffered fatigue damage. Yet more advanced applications
have been proposed, involving coupling viscoelastic damping with active controls in
space structures.

Advanced analysis methods, particularly finite element methods, can be used to
predict stresses, mode shapes, and natural frequencies adequately for guidance in the
design of complex elastic structures. The utility of these elastic analysis techniques has
been delineated by experimental as well as theoretical means. New methods, including
that of Segalman [41, have been developed to enable corresponding calculations for
viscoelastic structures. The work presented here is an experimental verification of that
method.

Analytic Prediction of Damping

Inducing damping response in an otherwise elastic structure through the use of
constrained viscoelastic layers is a technique that has been applied since the late 1950's.
The work of Ross, Ungar, and Kerwin [11 marks the beginning of meaningful analytic
methods for prediction and design of damping treatments for simple structures. Such
methods are generally restricted to problems of beams and fiat plates, for which closed
form expressions for frequency and mode shape can be derived.

A technique for addressing constrained layer damping of more general structures
was developed later as the "modal energy method" (2,3j. This method employs as-
sumptions analogous to those underlying the Ross, Kerwin, and Ungar method for
beams and plates, but generalizes them to forms that can be employed with finite
element solutions for frequency and deformed mode.

The above prediction methods are restricted to problems involving primarily elas-
tic structures with distinct viscoelastic regions. There is a further restrictive assump-
tion embedded in those methods that the damped modes are identical to corresponding
elastic modes. These restrictions sufficiently limit the application of those techniques
that it is necessary to examine more general methods.
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One more general method for prediction of damping in linearly viscoelastic struc-
tures was proposed by Segalman [4]. That work consisted of a purely formal derivation.
The purpose of the work presented below is to test a numerical implementation of that
method against measurements on a very simple viscoelastic structure. The results,
shown below, provide strong encouragement to the authors to address more complex
structures, for which the generality of the analytic method tested here can be demon-
strated.
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2. Analytic Method

2.1 Formulation

Formal Evaluation of Damping and Stiffness Matrices

The method presented in [4] begins with consideration of a nearly elastic structure,
possessing only a small amount of viscoelasticity. This "slightly viscoelastic" structure
consists of an underlying elastic system plus small contributions from the integral terms
associated with viscoelastic material response. A perturbation expansion yields formal
expressions for the complex modes and frequencies of the structure. (That expansion
involves the natural modes and frequencies of the underlying elastic structure, whose
elastic properties are those which would be measured in quasistatic experiments.)

A perturbation expansion is also performed on a similar but slightly damped,
nearly elastic structure. This "slightly damped" system consists of the same underlying
elastic structure plus small perturbations in the damping and stiffness matrices. Formal
expressions for the damping and stiffness matrices of the second structure are obtained
by requiring that the complex modes and frequencies of the two structures agree. The
formal process described above is represented by the chart of Figure 2.1.

The strategy outlined above results in the following expressions for the damping
and stiffness matrices:

N

C= Im ( r*( W ) X (zn)T) (2.1)
modes n=1 

Wn

and
NK = : Re (r'*(Wn) Xn(Zn)T (2.2)

modes n=1

where P*(w) is the complex structural stiffness matrix of the viscoelastic
structure evaluated at frequency w.

N is the number of elastic eigensolutions retained in the calcula-
tion.

and w n is the n'th eigenfrequency and Xn is the n'th eigenmode of the
elastic structure. Together, no and Xn are the n'th eigen solution
to the equation:

[_(W )2 M + K.] x- = 0 (2.3)
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FORMAL STRATEGY OF DERIVATION

Elasticity Elasticity
+ c Viscoelasticity + c Damping

I I
Perturbation Expansion Perturbation Expansion

Complex Modes Complex Modes
and Frequencies and Frequencies

\ /

Formal Expressions for [C] and [K]

Figure 2.1. Outline of Strategy for Calculation of Damping and Stiffness Matrices
for Linearly Viscoelastic Structures
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The remaining quantities, n and If. are defined by:

f= . F*(O) (2.4)

f" n IK.xn (2.5)

and
z n =fn / (n) T fn (2.6)

(In Equations 2.1 and 2.2 and in what follows, expressions such as Xn (zn)T are
matrix-valued outer products, and expressions such as (xn)T zn are scalar-valued inner
products.)

When the damping and stiffness terms are combined with inertial terms, a second
order system of equations results:

M i(t) + C i(t) + K x(t) = r(t) (2.7)

where M is the structural mass matrix;

x(t) is the generalized (nodal) displacement vector;

and r(t) is the corresponding force vector.

Some observations should be made at this point.

* The complex stiffness matrices r*(w) could, in principle, be calculated in the
standard manner that elastic stiffness matrices are calculated, but using the com-
plex material properties evaluated at frequency w rather than the corresponding
elastic material properties.

e It is a result of classical linear viscoelasticity that K. above, is the stiffness matrix
that would be constructed using material properties obtained from quasistatic
measurements [5].

* The vectors n and z' form a biorthogonal set:

(Xk)T zI= b6k (2.8)

The above relationship was central to the derivation of (4].

* The elastic eigenmodes, xk, are determined at this point only up to an arbitrary
factor. They become uniquely defined when scaled so that

(Xl)T M Xk = 1 (2.9)
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for each mode k. This is one of the standard forms of eigenvector normalization
and from substitution of the above equation into Equation 2.3, the eigenfrequen-
cies can be isolated:

(xk)T fk = (LOT (2.10)

This normalization becomes useful below in the extraction of complex eigenpairs
for the damped system.

* Though the damping and stiffness matrices (Equations 2.1 and 2.2) of Equation
2.7 are expressed as expansions involving x1 and wn , these are eigensolutions of
the elastic problem, Equation 2.3, and not of the damped system, Equation 2.7.

" The matrices defined by Equations 2.1 and 2.2 are, in general, full and non-
symmetric. Though at first disconcerting, these features should not be unex-
pected: symmetric damping and stiffness matrices should be expected only where
there exist elastic strain energies and Rayleigh dissipation functions. Such po-
tentials do not exist for general viscoelastic materials.

Elastic Modal Coordinaies

In order to deal with a smaller system of equations, it is useful to express displace-
ments in terms of the elastic modal coordinates:

N

x(t) = 1 a'(t) X (2.11)
modes n=1

(The modal coordinates an(t) are found by contracting the above equation with (zk)T

and invoking Equation 2.8 to obtain the following:)

an(t) = (zn)Tx(t) (2.12)

Premultiplication of Equation 2.7 by (xk)T and substitution of Equation 2.11 for
x(t), generates the system equations in terms of the elastic modal coordinates.

I &(t) + C &(t) + K a(t) = /(t) (2.13)

In the above, the vector a(t) is composed of the scalars aI(t), . is the N'th order
identity matrix, and the matrices C7 and K are defined by

Ck,, = (xk)T hi (2.14)

and
Kk, = (X g (2.15)
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where

hk = Im ( 1 k)/ (2.16)
and g k = Re ( r*(wk) ) x; (2.17)

The components, ft(t), of the vector fl(t) are the contraction of r(t) with each of the
elastic eigenmodes:

#,(t) = (x,)T r(t) (2.18)

It should be noted that the equations of [2] and [3] result if all off-diagonal terms
of Equation 2.14 for C are dropped and the term g' in Equation 2.15 for K is replaced
by fl. Such a reduction of Equations 2.14 and 2.15 to obtain those of [2] and [3] is
reflective of that method's assumptions that elastic eigenmodes are preserved and that
strain energy is independent of frequency.

Frequency Response Matrices and Complex Eigenanalysis

Once the matrices C and K have been calculated, Equation 2.13 is recast as a first
order system of equations in state space and the complex eigenmodes and frequencies
are extracted. We have chosen to use the formalism of Newland [6] for these steps of
the calculation. Letting ( (t) 1

s(t) (2.19)

Equation 2.13 becomes
A(t) = As(t) + F(t) (2.20)

where
A 0 _(2.21_)

and

F(t) 0 { }(t) (2.22)

The above state-space equation is diagonalized through introduction of a matrix,
U, whose columns are the complex right-eigenvectors of A:

AU = UA (2.23)

where A is a matrix whose diagonal terms are the complex eigenvalues, Ak, of A and
whose off-diagonal terms are zero. Since A is a 2N by 2N matrix, U and A are also of
dimension 2N. Both U and A are products of standard numerical eigensolvers.
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Each complex eigenpair, (Uk, Ak) and its conjugate, (Uk*, A)4) combine to generate
real displacements:

s(t) = D el'" [cos(4kt + 9) Re (Uk) - sin(4kt + 9) Im (Uk)] (2.24)

where uk = Re Ak is the damping factor for that mode, Obk = Im Ak is the damped
natural frequency for that mode, and D and 9 are indeterminate. The above expression
transforms, through Equations 2.11 and 2.19, to corresponding expressions in terms of
displacement coordinates:

N

x(t) = D euk t  x [ cos(Okt + 0) Re (U') - sin(Okt + 0) Im (Uk)] (2.25)
modes n=1

and
N

i(t) = D eAk t Z x" [cos(V'kt + 0) Re (UN + ) - sin(Okt + 9) Im(UNn)
modes n=1

(2.26)
where Ukn is the n'th component of the k'th complex eigenmode. From the above, it is
seen that when expressed in spatial coordinates, the k'th complex eigenmode, x., is:

N

xc= X n Uk (2.27)
modes n=1

The complex frequency Ak can also be expressed in the more common terms of
damping ratio Jk and a nominal "undamped" frequency C k:

Ak=, & k [-2 + i 1i-] (2.28)

where
(Re Ak) 2  (2.29)

k = (Re Ak) 2 + (Im Ak) 2

and
Cok = -Re Ak/ k (2.30)

In general, the nominal "undamped" frequency ck will not equal any of the natural
frequencies of the underlying elastic system, since the complex modes do not, in general,
equal any individual elastic mode.

Equation 2.23 is substituted into Equation 2.20 and the result is rearranged to
yield an uncoupled system of equations which can be integrated to yield s(t):

s(t) = U A,' S(0) + U j eA ( - U- ' F(T) d- (2.31)
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The quantity e"t is the diagonal matrix of terms e k t.

In the case of harmonic excitation forces,

1 #0 ef(t) = Re { e30 iw }(232
Equation 2.31 becomes

s(t) = Re (GW) { i~ (2.33)1 0e

where Ht(w) is the frequency response matrix

H(w) = U d(w) U (2.34)

and
0 0

d(w) N0 0 (2.35)
0 0

Since Hf is constructed from the eigenvectors and eigenvalues of A, and those
eigenquantitites occur in complex conjugate pairs, it is not surprising that there is
some redundant information in A. Only the upper right-hand quarter of H(w),

ft1,2 (W) = P d(w) Q (2.36)

where P is the upper half of U and Q is the right half of U -1 , is necessary for calculating
the displacement frequency response of the structure

a(t) = Re (t'2(w) /o ei") (2.37)

Substitution of Equation 2.18 into Equation 2.37 and substitution of the result into
Equation 2.11 returns the frequency response matrix for the original displacement
vector x(t):

x(t) = Re (H(w)roew t ) (2.38)

where
H(w) P d(w) Q (2.39)

and
N

Pk= Z ,, (2.40)
modes n=1
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and N

QkJ= i Qk,, X7 (2.41)
modes n=1

Evaluation of individual components Hij(w) over ranges of w involves far fewer
calculations than would first appear since only individual rows of P and individual
columns of Q need to be evaluated and stored while the diagonal matrix d(w) is eval-
uated over the frequency range of interest.

2.2 Numerical Implementation

There are two parts to the numerical implementation of the formulation developed
above:

o the evaluation of the damping and stiffness matrices occurring in Equation 2.13.

o the matrix operations associated with evaluation of complex modes and frequen-
cies and the calculation of the frequency response matrix.

Evaluation of Damping and Stiffness Matrices

Evaluation of C and k is done through the following steps:

1. Material properties for all constituent materials are tabulated - as functions of
frequency - in two distinct sets of tables: one for storage response (real part) and
one for loss response (imaginary part). (With the finite element code used in this
project, MSC NASTRAN [7], it is convenient to use the table formats which that
code associates with temperature-dependent material properties.) For the second
set of tables, the loss moduli are divided by w so that it is actually viscosity type
properties that are tabulated.

It is important that the tabulated material properties are tailored so that Lame'
constants calculated from them are the real and imaginary parts of the Lame'
constants of the material.

2. NASTRAN is used to formulate and solve the elastic eigenproblem of Equation
2.3. In this step, the stiffness matrix is constructed from the real part of the
material response in the limit of zero frequency. This step generates quantities
wn and Xn for the range of frequencies of interest.

NASTRAN is also used to evaluate hn and gn (Equations 2.16 and 2.17). For
each eigenpair (Wn, x'n), two statics problems are directed to NASTRAN
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(a) for which the displacements are specified as x'" and the material properties
are selected from the first set of tables and evaluated at frequency w' . The
resulting force vector is g'.

(b) for which the displacements are specified as xn and the material properties
are selected from the second set of tables and evaluated at frequency w'.
The resulting force vector is h .

The above calculations are done with procedures which are documented in the
MSC literature for the solution of problems involving temperature dependent
material properties.

3. C and k' are evaluated in the manner indicated in Equations 2.14 and 2.15, by
taking inner products of vectors xk with vectors g and ht , respectively. The
appropriate Fortran coding is reasonably straightforward.

Complex Modes and Frequencies, Damping Ratio, and Frequency Response

1. Matrix A of Equations 2.21 is constructed in the manner indicated, and its com-
plex eigensolutions are extracted using routines found in the SLATEC 181 library
of Fortran code. Some sorting and normalization of the complex eigenvectors Uk
is useful before printing. (In the case that the n'th elastic eigenrxiode is preserved,
the associated complex '.igenvector is zero in all but the n'th and N+n'th com-
ponents.) Damping ratios for each complex mode are calculated from Equation
2.29 and printed along with the corresponding complex eigenfrequency-eigenmode
pair.

2. Fortran code has also been written along the lines suggested by Equations 2.39
through 2.41 for the evaluation of complex frequency response functions for given
nodal-force/nodal-displacement pairs.

The above codes generate three quantities that can be compared to experiment: com-
plex mode shape, complex frequency (including damping ratio), and frequency response
functions.

Also, though it cannot be demonstrated in this media, Fortran code has been
written to evaluate Equation 2.25 to generate Patran (91 ".DIS" files which are then
used to create movies of the complex modes.
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3. The Experiment

AFWL/ARBC personnel performed experimental modal surveys on two test arti-
cles in support of this verification effort. The test articles were residual hardware from
a previous study on damping techniques [10]. The first test article was a 68" x 2" x 1/8"
aluminum C-channel extrusion. The second test article was an identical C-channel ex-
trusion treated with constrained layer damping. This treatment which was applied to
the backside of the beam, consisted of a layer of viscoelastic material(VEM), 3M ISD-
112, sandwiched between the beam surface and an aluminum constraining layer (see
Figure 3.1). Elastic properties for the aluminum and for the polymer are provided in
Table 3.1 and the viscoelastic properties of the polymer are provided in Tables 3.2 and
3.3. The test articles were suspended using elastic bands at the two ends to simulate
free-free boundary conditions in the modal testing.

This test utilized an Endevco model 23 triaxial accelerometer to measure motion
of the test article and an instrumented impact hammer to apply and measure the
input disturbance. The Endevco model 23 triaxial accelerometer is a very lightweight
piezoelectric motion sensor, and was chosen to avoid mass-loading issues, particularly
in the testing of the undamped beam. The outputs of this device were attached to
three B & K model 2635 charge amplifiers, which convert the accelerometer output to
a voltage and perform signal amplification. The input disturbance was provided by a
PCB model 086B03 impact hammer. This hammer has a force gage built into the tip
which measures the input disturbance. The output of this gage was attached to a PCB
model 480D06 power unit which amplified the sensor signal.

This amplified input signal and the three charge amplifier output signals were
input to the first four channels of the data acquisition system. The Modal Analysis
Data Reduction And Testing System (MADRATS) was the primary testing computer
for this program. This system is based on a Hewlett Packard A-900 computer, a multi-
user, real-time interrupt system. This system includes a 132 Mbyte hard disk, 3 Mbyte
memory and a complete data acquisition and analysis workstation. The system also
includes other support peripherals such as printers, plotters, and tape drives.

The system front end is a 64 channel DIFA SCADIS data acquisition system.
The DIFA SCADIS is fully programmable, either manually from the attached key-
pad or through the data acquisition software on the computer via an HP-IB interface.
This front end utilizes programmable gain pre-filter and post-filter amplifiers and pro-
grammable bandpass filters. The SCADIS samples all channels in parallel using sample
and hold buffers. This data is digitized by the SCADIS and then multiplexed into the
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Material Shear Modulus Go Poisson'c Ratio Density

(psi) (lb sec'/in 4 )

Aluminum 3.76E6 0.33 2.054E-4

3M ISD-112 60.0 0.49 1.90E-4

Table 3.1. Elastic Properties of Aluminum and 3M ISD-112

A-900 computer memory via a parallel interface. This system has a frequency range
of 0.1 to 10,000 Hz and a dynamic range of 63 dB. The maximum throughput rate to
memory of the SCADIS is 350 kHz.

Data acquisition is accomplished through the Leuven Measurement Systems Fourier
Monitor (FMON) software package. Several modal testing techniques can be performed
using FMON, including forced response, power spectrum, and impact testing. Test-
ing can be set up and performed using menu-driven programs, user-defined command
stacks or manually. The test program covered in this report utilized the menu-driven
programs which allow test setups to be stored into and loaded from memory. Test
setups from memory were used, requiring changes only to transducer location for the
various test runs.

Data reduction is also performed on the MADRATS computer using the Leuven
Measurements Systems Super Modal Analysis Package (SMAP). SMAP computes the
modal parameters of a structure from the frequency response functions produced in
data acquisition. This software package has several available parameter estimation
techniques to tailor analysis to a specific test. The primary algorithm used in reducing
the data of this test program was the Least Squares Complex Exponential Time Domain
Method. In addition, a variety of curve fitters are available, including a real and
imaginary fitter, circle fitters, and a Least Squares multiple degrees of freedom fitter.
The least squares MDOF method was the most frequently used because of the modal
density involved in these tests. The specific applications of these methods will be
discussed in more detail in the Results section of this report.

The first tests were performed on the bare beam. Prior to testing, a test setup
file was generated and stored on the computer. The testing consisted of a 200 Hz
bandwidth, roving accelerometer impact test. The accelerometer was first attached
to the beam, and the point number and direction information was entered into the
computer. The structure was tapped by the impact hammer at a point at one end of
the beam, 0.5 inches from the centerline, in order to perform the autoranging of the
data acquisition channel amplifiers. A series of eight impacts was performed, and the
data was averaged and processed to provide frequency response and coherence functions
for each of the three axes at the data point. The power spectra of each impact, and
the frequency response functions for the response channels were each viewed prior to
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acceptance, and the resulting transfer functions were stored on the disk. This procedure
was repeated for each of the 36 data points on the bare beam, and for the 36 data points
on the damped beam whose data was stored under a different test identification.

The frequency response functions for the undamped beam exhibited high amounts
of spectral leakage, leading to poor coherence functions. Exponential windowing was
used on the response data for the undamped beam to reduce the leakage to acceptable
levels. This added damping by the window can be backed out of the modal parameters
calculated from data reduction. Windowing was not required or used in testing the
damped beam because the higher damping exhibited by this structure greatly reduced
leakage effects.
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Storage Modulus G'(f) = Go * (1.0 + g(f))

frequency f (hz) g(f) frequency f (hz) g(f) frequency f (hz) g(f)

.OOE+00 .OOE+00 .70E+01 .18E+00 .31E+02 .68E+05

.13E+03 .19E+01 .40E+03 .46E+01 .14E+04 .11E+02

.46E+04 .24E+02 .14E+05 .58E+02 .55E+05 .12E+03

.20E+06 .24E+03 .13E+07 .46E+03 .40E+07 .62E+03

.22E+08 .81E+03 .87E+08 .98E+03 .49E+09 .12E+04

.18E+10 .13E+04 .54E+10 .15E+04 .22E+11 .16E+04

.39E+11 .17E+04

Table 3.2. Storage Modulus of 3M ISD-112

Loss Modulus G"(f) = 21rf * Go * h(f)
frequency f (hz) h(f) frequency f (hz) h(f) frequency f (hz) h(f)

.OOE+00 .23E-01 .23E+01 .16E-01 .67E+01 .11E-01

.21E+02 .81E-02 .42E+02 .65E-02 .11E+03 .46E-02

.24E+03 .35E-02 .49E+03 .29E-02 .65E+03 .25E-02

.13E+04 .19E-02 .31E+04 .14E-02 .96E+04 .84E-03

.28E+05 .49E-03 .64E+05 .30E-03 .25E+06 .11E-03

.14E+07 .22E-04 .77E+07 .39E-05 .46E+08 .66E-06

.33E+09 .93E-07 .24E+10 .12E-07 .11E+11 .25E-08

.41E+11 .63E-09 .54E+11 .46E-09

Table 3.3. Loss Modulus of 3M ISD-112
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4. Experimental Results and Comparison with Experiment

Figure 4.1 shows the driving point frequency response functions for the two beams.
The driving point is at one end of the beam, 0.5 inches from the center line. The
sharpness in the peaks of the bare beam transfer function graphically demonstrate the
extremely low damping present in this beam. The shorter, more rounded peaks in the
frequency response function of the damped beam demonstrate graphically the effect of
the treatment both on the damping present in the beam and the magnitude of response
at the natural frequencies. These frequency response functions also demonstrate a
slight frequency shift due to the increased stiffness provided by the damping treatment.
Frequency response functions similar to the driving point response function were stored
on the disk for each data point on the two beams.

Data reduction was performed using the Super Modal Analysis Package (SMAP)
software residing on MADRATS. The data was reduced using a Least Squares Ex-
ponential method for parameter estimation and curve fitting. This data reduction
resulted in modal frequency and damping information, as well as displacement files for
each mode of the structure in the 0-200 Hz bandwidth. This procedure was repeated
for the data sets for each beam. Table 4.1 shows a comparison of the results from the
two test articles in terms of frequency and damping.

Figure 4.2 is a series of plots for the mode shapes of the damped beam. These
mode shapes were produced by combining the displacement files produced by the data
reduction with a geometry file. This data can also be animated to aid in the interpre-
tation of the mode shapes.

The damping results for the final mode were not included because they were
somewhat suspect. To prevent aliasing in the data, the data acquisition system filters
were set to roll off at 70% of the upper frequency of a test. This last mode was so close
to the upper frequency bound that most of its signal was likely below the noise floor,
making it impossible for the parameter estimator to determine the damping values.
This mode was retained simply as another frequency value for comparison with the
analytic results.

The results of the analytic modeling and experimental testing were compared in
three ways. First. a qualitative comparison was drawn between the frequency response
functions developed analytically and through testing. Figure 4.3 shows an overlay of the
experimental and analytic driving-point frequency response functions for the damped
beam. The dashed curve is the experimental data. The impact hammer used to excite
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Figure 4.1. Driving point frequency response of damped and undamped beams
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fl 1 f 15.68 Hz f 2 f 39.78 Hz f 3 -f 73.76 Hz f4 91.81 Hz

1st Bending 2nd Bending 3rd Bending 1st Torsional

f 5 -101.9 Hz f 6 -116.5 Hz f7- 169.6 Hz f8 - 190.0 Hz

1st Bending (in-plane) 4th Bending Sth Bending 2nd Torsional

Figure 4.2. Real and Imaginary components of complex modes of damped beam.

Imaginary components are essentially zero.
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Undamped Beam Damped Beam
Mode Frequency Damping Frequency Damping

(Hz) (% Critical) (Hz) (% Critical)
1st Bending 13.38 0.295 15.68 5.837
2nd Bending 37.00 0.190 39.78 8.069
3rd Bending 72.12 0.156 73.76 8.489
1st Bending

(in-plane) 99.77 0.278 101.95 0.204
1st Torsional 102.90 0.289 91.81 2.386
4th Bending 119.13 0.211 116.46 8.367
5th Bending 177.84 0.146 169.63 7.054
2nd Torsional 190.58 - 190.01

Table 4.1. Experimental Test Results

the experimental modes was uncalibrated, so the experimental curve is known only up
to a multiplicative constant, corresponding to a vertical translation in the semi-log plot
shown here.

Comparison of the frequency and damping information from the test data and
modeling results provides a more quantitative method of comparison. Tables 4.2 and
4.3 contain these results for the two test articles. Note that both prediction and
experiment for the damped beam show a reordering of the first torsicnal and the first
in-plane-bending modes.

The comparison of the first test article results was used to gain confidence in the
NASTRAN model of the beam prior to modeling the damping treatment. As one
can see from the results presented in this table, nearly identical results were achieved
through testing and modeling of the undamped beam, particularly in the bending
modes. The larger differences in the natural frequency values for the two torsional
modes have been attributed to fundamental torsional characteristics of the plate ele-
ments used in the modeling.

The second test article was compared using damping as well as natural frequency
results. As indicated in the table, the frequency values are again nearly identical,
with the largest variance being less than seven percent, and all of the bending modes
being within five percent. The dmping results were not predicted as well as the fre-
quencies, but this is expected considering the relative difficulties in both measurement
and prediction. The agreement between measured and predicted damping values is
encouraging since they agree to within the uncertainty of viscoelastic properties of the
polymer.

The difference for the in-plane bending mode damping was the highest, but it is
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Figure 4.3. Overlay of the experimental and analytic frequency response functions

for the damped beam. The dashed curve is the experimental data.
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AFWL Measured Sandia Predicted % Diff.
Mode Frequency Frequency

(Hz) (Hz)
1st Bending 13.38 13.75 2.7
2nd Bending 37.00 37.82 2.2
3rd Bending 72.12 74.01 2.6
1st Bending

(in-plane) 99.77 100.70 0.9
1st Torsional 102.90 85.40 18.6
4th Bending 119.13 122.10 2.5
5th Bending 177.84 182.10 2.4
2nd Torsional 190.58 173.10 9.6

Table 4.2. Comparison of Undamped Beam Results

AFWL Measiired Sandia Predictcd % Dilff.
Mode Freq. Damp. Freq. Damp. Freq. Damp.

(Hz) (% Cr.) (Hz) (% Cr.)
1st Bending 15.7 5.8 15.1 6.1 3.9 5.0
2nd Bending 39.8 8.1 38.0 11.3 4.6 33.0
3rd Bending 73.8 8.5 70.6 12.0 4.4 34.1
1st Torsional 91.8 2.4 87.2 1.7 5.1 34.1
1st Bending

(in-plane) 102.0 0.2 102.6 0.07 0.6 96.3
4th Bending 116.5 8.4 113.4 10.2 2.7 19.4
5th Bending 169.6 7.1 166.8 9.2 1.7 25.8
2nd Torsional 190.0 - 177.5 2.6 6.8 -

Table 4.3. Comparison of Damped Beam Results

important to note that the experimentally measured result is highly suspect due to the
difficulty in imposing a purely vertical impulse at the driving point.

A method known as Modal Assurance Criterion (MAC) was also used in comparing
the analytic and experimental results. MAC is a least squares approach to determining
the consistency of estimated modal vectors of a system. MAC is calculated using the
equation:

I(X,)(y,)*I2 I[(xj),(X,)* (y,),(y,) ] (4.1)

where x' is an estimate (in this case numerical) for the m'th complex eigenmode and
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y' is an estimate (in this case experimental) for the n'th complex eigenmode. A little
algebra will verify that

1- MACM,1 minjlx - ay'l 2  (4.2)
(xo)T(Xo)*

MAC is a scalar constant between 0 and 1 relating the two modal vectors. (It may
be thought of as the square of the cosine between those vectors.) A MAC value of one
or nearly one will give confidence that the modal vectors represent the same modes. If
the MAC value is near zero, there is no linear relationship between the two estimates,
indicating two different modal vectors.

The eight experimental and eight analytic modal vectors were compared using the
MAC procedure. The results of this comparison are shown in Figure 4.4. The blocked-
in area of the chart indicates the results when the similar analytic and experimental
vectors were compared. These results, particularly the out-of-plane bending modes,
give confidence that these modal vectors describe the same mode, and are nearly iden-
tical.
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EXPERIMENTAL ANALYTIC

1 2 3 4 5 6 7 a 1 2 3 4 6 6 7 a

1.0 0.00 0.05 0.00 0.00 0.02 0.03 0. .9 .00 0.00 0.00 0.00 0.00 0.00 0.00 1
E

1.0 0.01 0.00 0.00 0.09 0.01 0.01 0.0 .0 .00 0.00 0.00 0.08 0.00 0.00 2 X
p

1.0 0.01 0.00 0.03 0.04 0.01 0.06 0.0 .9 .00 0.00 0.02 0.08 0.00 3 E
R

1.0 0.01 0.00 0.01 0.00 0.00 0.00 0.0 .7 .01 0.00 0.00 0.00 4 1
M

1.0 0.00 0.00 0.14 0.00 0.00 0.00 0. 0. .00 0.00 0.00 5 E
N

1.0 0.03 0.01 0.02 0.10 0.01 0.00 0.0 .0 .04 0.00 6 T
A

1.0 0.01 0.04 0.01 0.06 0.00 0.00 0.0 .0 .01 7 L

1.0 0.00 0.01 0.00 0.00 0.22 0.00 0.0 0.0 8

1.0 0.00 0.11 0.00 0.00 0.00 0.1 1 0.0 1

1.0 0.00 0.00 0.00 0.12 0.00 0.00 2
A

1.0 0.00 0.00 0.00 0.12 0.00 3 N

Mode Number Mode Description 1.0 0.00 0.00 0.00 0.00 4 L
Y

1 1 st Bending 1.0 0.00 0.00 0.00 5 T

2 n9edn 1.0 0.00 0.00 6 C
3 3rd Bending7
4 1st Torsional 1000

5 1st Bending (in-plane) 1.0 8

6 .4th Bending
7 5th Bending

8 2 nd Torsional

Figure 4.4. MAC parameters of experimental and analytic modal vectors for first

eight complex modes.
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5. Conclusions

Though the structure employed in this study was very simple, this study does
demonstrate the predictive capability of the computational method of reference [4].
Though the structure had sufficient symmetries to preclude the existence of true com-
plex modes, it did have sufficient character in its frequency response functions and
damping parameters to permit some comparison of the desired sort.

Particularly encouraging was that the predicted and measured damping values for
the beam agree to within the uncertainty of the viscoelastic properties of the damping
polymer.

The study served its purpose in providing sufficient confidence in both the numer-
ical and experimental methods to facilitate future studies involving more sophisticated
structures.

Some further comments about the computational process are appropriate:

" Though the numerical implementation of the derivations of the second chapter
of this report did require writing much original computer code, the onerous work
of involving mesh generation, finite element eigen- and static analysis was done
with the aid of the commercial codes PATRAN and MSC-NASTRAN.

" With the exception of the finite element analysis, the calculations can be per-
formed with reasonably small matrices. This is achieved by using the elastic
modes as generalized coordinates and restricting attention to the frequency range
of interest.

* The complex modes can be assembled in a systematic manner from the mass,
damping, and stiffness matrices using the formalism of Newland [6]. The complex
modes can then be used, in the manner shown here, to calculate transient response
(Equation 2.31) and frequency response (Equation 2.38).
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A NEW APPROACH TO MODEL DETERMINATION
OF LARGE FLEXIBLE SPACE SYSTEMS

F.Y. Hadaegh, D.S. Bayard, Y. Yam and E. Mettler
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4800 Oak Grove Drive
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ABSTRACT

The product moment matrix (PMM) is used for the estimation of linear model order
for flexible space structures from the input-output data. A new automated frequency
domain identification methodology is presented and experimentally verified for on-orbit
determination of transfer functions. The identification process is initiated by applying
stochastic inputs to the system giving rise to a nonparametric spectral estimate of the
structural parameters. The PMM algorithm obtains an initial estimate of the model order
and together with the initial parameter estimates, they provide an initializing transfer
function. The system transfer function is then obtained by curve fitting the spectral
estimates to a rational transfer function. This approach makes efficient use of the actuators
and sensors already available on the system for control applications and also demonstrates
that on-orbit identification capability is a realistic objective for the future space systems.
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1. Introduction

The mathematical modeling and identification of large flexible space systems have
been challenging tasks for several decades. The models for such systems should predict
the behavior of the actual system under restricted experimental conditions. Furthermore,
when correlated and tested against the actual data, they should explain the observed
behavior of the system through post-mission data analysis. In practice, the identification
problem is often separated into two parts: a) determination of the order for a linear model
and b) estimation of the parameter values of the resulting model. Clearly, in a linear
system the model structure is determined by the choice of the order. Hence, an incorrect
structural assumption may manifest itself in biased parameter estimates or may even lead
to erroneous conclusions on the results of the identification process (e.g., a large model order
leads to over parameterizations and identifiability problems; where as a small order may
result in a large bias in parameter estimates). This is of particular interest in the case of
on-orbit identification where model parameters have physical significance and the accuracy
of the parameter estimate is the primary objective of the system identification experiment.
On- orbit system identification enables on-line design of robust, high performance control
systems. This capability has the potential to improve the performance robustness and
control accuracy under operational constraints and environmental uncertainties far beyond
that attainable by using nominal system descriptions obtained from ground testing and
analysis alone.

This paper presents a new frequency domain system identification architecture de-
signed to operate with a high degree of autonomy and to restrict the "human in the loop"
requirements. This includes an automated estimation of model order in the presence of
measurement noise; the main subject for discussion in this paper. Major theoretical and
experimental developments associated with this approach are discussed in [10]. Different
techniques for model order determination have been studied [1-9]. They include fit-error
statistics [1], Akaike's criterion [2], Kalman filtering [3], likelihood ratio Lest [4], methods
based on pole-zero cancellation [7], statistical F-test [8], and Parzen's criteria [9]. These
methods are often estimation based oriented and utilize statistical methods for extracting
information about a system model from the observed data. They often require normality
assumption on the measurement noise and furthermore, they involve processing of large
volumes of data. Here, the product moment matrix [5] approach is chosen for a variety
of reasons and in each case it proves advantageous over alternate methods. For example,
the PMM requires no a priori assumption on the model parameterization and form and it
requires no knowledge of density or distribution functions of unknown parameters or data.
This technique is applicable to both deterministic and stochastic systems. Finally, the
PMM algorithm is robust with respect to uncertainties and it produces meaningful results
even in the presence of significant additive measurement noise. A brief discussion of the
PMM algorithm follows.
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2. The Product Moment Matrix

The idea behind the PMM approach is to analyze the correlation function of the input-
output variables for a linear model of changing structure. This will subsequently lead to a
pronounced dynamic behavior around the "true" order of the system. This behavior may
be observed through the determinants or eigenvalues of the product moment matrix with
elements constructed as follows.

Let {uk} and {Yk} be a set of observations of input and output respectively (data)
which are contaminated by measurement noise. Let us also assume that the input signal
is sufficiently rich such that it persistently excites all system modes of interest. A linear
system of order n has a system function which is given by

U =z 1 -YT) 02,z' (1)

letting
OT(n) = [01, ,02n] (2)

and
AT(k, n) = [Uk-1, yk--i Uk-2,y !k-2,... Uk-nYk-n] (3)

Then in time-domain, the measured system response is given by

Yk = T(n)A(k,n) (4)

For N measurements, the "generalized Hankel matrix" H(N) is as follows.

Y O Yi ... UN-i
H() Y1 Y2 ... YN IH(N)= . =Yi+j-2 i,j > 0 (5)

YN-1 YN Y2N-2

Similarly, the generalized Hankei matrix for the N x N block matrices formed out of the
shifted sequence Yk+t will be

H(N) = [Yi++-2]

If a finite-dimensional realization for the system exists, denoting n* as the rank of its
minimal realization, then [21]

n* = Rank H(N) (6)

Since n* is the dimension of a minimal realization of the system which is unknown, it
will subsequently be referred to as the "true" order of the system. Note also that the
ordering of components in the vectors A(k, n) and 0(n) are such that for a higher-order
model, additional components are simply added to the end of these vectors. The product
moment matrix of the system is defined by:

N T
Q[n, N]=_ Qn N - : A(k, n) A T (k, n)
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i N EkN -- n

1 -(k=1 Yk-lUk-I k=1 /ik-I "'" k=1 Yk-lYk-n. . (7)
N

where n is an assumed order for the system and N is the number of data points. If the

data is noise free, then Q, will become singular for all n > n* [6], and

Rank[Qn] = n }frn{ }n* (8)

Hence, Qn has the following properties:

det[Q,]{= 0 fornf }n* (9)1= 0o >9

For an arbitrary value of N and an assumed value of n, the ratio

det[Qn]
= det[Q.+ 1] (10)

is calculated for succeeding model orders n + 1,..., n*, nm , . If the value of D, exhibits

a distinct increase compared to D,- 1 , then n corresponds approximately to n*. In the
presence of noise however, the Det[Q,] is usually non-zero for n > n*.

In practice, where the measurement noise is nonwhite, the enhanced PMM given by

O(11)
n

is used. An estimate of , the measurement noise contributions to the PMM, is obtained
n

by first collecting measurements from the system when the input to the system is identically
zero. Denoting the input measurement noise by n. and the output measurement noise by
n., then , is computed as

ft = QnI y = n,, u = n.
n

The Q product moment matrix henceforth referred to as enhanced product moment
matrix (EPMM) will reduce to the formulations (7) depending upon the nature of noise
in the data. The EPMM, although computationally less efficient, gives a better estimate
of the system order in the presence of measurement noise.

An alternative representation of PMM is given as follows:

Qn = E[ananJ (12)
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where
a, = [uO Yo U1 y, ... Un-lYn-]

and E is the statistical expectation operation. We will refer to Equation (12) as the
stochastic representation of PMM and the Equations (7) and (11) as the deterministic
representations of PMM.

When the underlying dynamical process is stationary, the correlations have the form:

E[uiyi] = R,,y(j - i)

E[ujui] = R,,(j - i) = R,(i -j) (13)

E[yiyj] = Ryy(j - i) = Ryy(i j)

Then by assuming that the process is ergodic, temporal averages are equivalent to ensemble
averages, and the product moment matrix given in (7) has the simple analytical form:

lim Q(N,n) = Q.(n) (14)
N-.oo

Q1.1,1) ... Q(I,n)
Q,(n) = : : (15)

Q (.;, ) ... Q (n;,n)

QI) [ n ,,(j - i) R,(j - i) 1 (16)
= Ry(j i) Ryy(j i)l

This explicitly gives the product moment matrix without requiring any additional pro-
cessing of the input and output data. Thus when correlations are available under these
circumstances, the product moment matrix can be constructed with considerable fewer
arithmetric operations than those required by the deterministic algorithms. The key prac-
tical issues are the validity of the assumptions regarding stationarity and ergodicity of
the signals and the means for calculating the correlation functions based on finite-time
data lengths. A brief description of modeling and identification algorithm architecture
and methodology follows.
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3. Functional Architecture, Modeling and Identification Description

The functional architecture is outlined schematically in Fig. 1. The flow of the various
processes is automated and controlled from a single human operator as described below.

a) The plant p(e j "wT) is excited by one of a variety of possible input excitations
u(kT) of both stochastic (i.e., wideband or narrowband) or deterministic
(i.e., sine-dwell) types giving rise to plant output y(kT).

The wideband input is simply a random number generator which produces indepen-
dent uniformly distributed variates. The narrowband input is produced by digitally filter-
ing the wideband input according to desired spectral characteristics. The capability for
on-line digital filter design is provided as part of the system software. The sine-dwell inputs
are piecewise constant approximations to true sinusoids, consistent with the sample-and-
hold discretization.

Wideband signals are also constructed artificially using a technique which we call data
composition. This is done by designing a bank of bandpass filters to cover a wideband
portion of the frequency axis, and then running a separate experiment for each bandpass
process. The input and output sequences from all bandpass experiments are then composed
(i.e., added together respectively) to give data for what is effectively a single wideband
experiment. The realization of such a wideband excitation in a single experiment would
otherwise be impossible due to actuator power constraints.

b) The plant transfer function is identified nonparametrically by spectral esti-
mation (in the case of stochastic inputs) and by gain and phase estimation
in the case of sine-dwell inputs.

For experiments using stochastic input excitation, spectral estimation is invoked to
compute the correlations R, RYI R. Y and spectral estimates P,,, Pyy, P.y from the input
and output data, as well as the plant transfer function estimate from the cross-spectral
estimate h = PY/P.

For experiments using sine-dwell input excitation, the gain, phase, real and imaginary
parts of p(ejwT) at sine-dwell frequencies are determined in real-time using a recursive
least squares estimator with exponential forgetting factor. This approach is particularly
well suited to provide accurate estimation using sampled-data sinusoidal responses and to
operate in the presence of low frequency resonances. The time constant for the forgetting
factor is typically chosen to be several cycles of the sine-dwell response. The sine-dwell esti-
mates of plant gain, phase and real and imaginary parts of p(ejwT) over several frequencies
can be stored for later use by the transfer function curve fitting routine.

c) Anticipating parametric curve fitting to follow, the model order is esti-
mated using a product moment matrix (PMM) test.
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To overcome much of the guessing and "human in the loop" efforts typically associated
with model order determination task, an initial estimate of the model order is obtained
by PMM test, and then followed by a search for the optimal order in the vicinity of this
estimate by a sequence of curve fits with varying orders. The quality of each fit is judged
by the output error profile.

The PMMD operates on raw data, and generates the PMM directly from the plant
input and output. The PMMS assumes statistical stationarity for the underlying process
and generates the PMM from the smoothed estimates of the auto and cross covariances
produced from the spectral estimation software.

d) The plant is identified parametrically by fitting transfer funct 'n coeffi-
cients to the nonparametric data. Model order is determined by 'I sequen-
tial search starting at the PMM estimate.

A parametric transfer function estimate P is determined by curve fitting the coeffi-
cients of a rationil transfer function to the nonparametric frequency domain data. The
data in this case is specified to be the spectral estimate h = PUY/PU and/or sine-dwell
estimates. The model order is determined by successively increasing the number of modes
in the curve fit, starting at the PMM estimate, until an adequate output error profile is
observed. The curve fit involves the use of a least squares algorithm with a special iterative
reweighting technique which removes high frequency emphasis (typically associated with
equation error methods), and assures minimum variance estimation of the transfer func-
tion coefficients. Resonant frequencies and damping estimates are automatically found by
robustly factorizing the plant denominator polynomial with a s2 ecial purpose routine.

e) The output error is determined to characterize the quality of the paramet-
ric transfer function estimate, and for later use in robust control analysis
and design.

The output error e = pu - yu is computed by subtracting the predicted output P = 3u
from the measured data y = pu and then the additive uncertainty 6m = p - P is estimated
by the cross-spectrpl estimate A = Pue/1 ,,. The nominal plant transfer function estimate
P5 and the estimate A of the additive uncertainty b.. can then be used directly for robust
control analysis and design. The motivation and usefulness of using the output error
characterization of additive uncertainty, and its role in robust control design is discussed
in [101.

4. Testbed Description

Experimental demonstration and verification of modeling and identification software
performance was conducted on the JPL/AFAL Flexible Structure Testbed. The design of
this 3-D antenna-like sti ucture was adopted as it exhibits many characteristics of a typical
large space structure. These include many low frequency modes, densely packed modes,
low structural damping, and three-dimensional structural interaction among components.
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In this section, a brief description of the testbed facility is given. Detail description can be
found in [101. The main component of the testbed facility is shown in Figure 2. It consists
of a central rigid hub to which are attached 12 ribs. The ribs are coupled together by two
rings of pretensioned wires.

Functionally, the wires are intended to simulate the coupling effects of a reflective
mesh installed over the rib frame in an actual antenna. The ribs are 2.25 m in length.
The hub is of radius 0.6 m, making the dish structure 5.7 m in diameter. The tensioning
wires are installed in two rings at approximate diameters of 3 m and 4.8 m. As intended
to achieve low modal freqencies, the ribs are very flexible. Stand along, they are unable
to support their own weight without excessive droop. To prevent structural collapse due
to gravity, each rib is supported at two locations along its free length by levitators. Each
levitator is constituted by a counterweight attached to the rib with a wire which passes
over a low-friction pulley. The support locations were calculated to minimize the rms shape
deviation along the rib from the root to tip. The calculations led to supporting the rib at
the 40% and 80% points which are 0.9 m and 1.8 m from the rib root, the same locations for
coupling wire attachments. A flexible boom is attached to the central axis of the hub and
has a mass at its lower end to simulate the feed horn of an antenna of the secondary mirror
assembly or an optical system. The original boom length was 3.6 m, but for the convenience
of conducting experiment at ground level, a second, 1 m long boom is being used for most
of the experiments. The feed mass is 4.5 kg. The hub is mounted to a backup structure
via a two-axis gimbal which allows rotational freedom about two perpendicular axes in the
horizontal plane. The gimbal bearings support roughly one quarter the weight of the ribs,
the entire weight of the hub, boom, and feed, and their respertive sensing and actuation
devices. Each of the ribs can be excited dynamically by a single rib-root actuator with a
lever arm of about 0.3 m from the hub attachment point. Each rib-root actuator consists
of a speaker-coil type device which reacts against a mount rigidly attached to the hub. In
addition, two speaker-coil type actuators are mounted on the hub to provide controlled
torquing about the two gimbal axes. These hub torquers apply linear forces to the hub at
its outer circumference to yield the required torques about the axis of rotation. Together,
these 14 actuators are capable of controlling all flexible modes of the structure. Each of the
24 levitators is equipped with an incremental optical encoder which measures the relative
angular rotation of the levitator pulley. These angular measurements are then translated
into the vertical motion of the ribs at the levitator/rib attachment points, relative to the
backup structure. Additional linear variable differential transformers (LVDT) sensors are
provided to determine the rib displacement measurements at four evenly space rib root
actuator locations. Hub angular rotations about the two axes are measured by two rotary
variable differential transformers (RVDT) mounted directly at the gimbal bearings.
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5. Case Study with Experimental Data

Results of a wideband excitation experiment are shown in Figures 3-A to H. The ex-
periment was performed oi one' of the two hub axes of the JPL/AFAL Flexible Structure
Testbed utilizing a collocated h01) torquer and an RVDT angular sensor for instrumenta-
tion. The sampling frequency wNas 20 Hz. The experim(t run time was 1638.4 sec. Figure
A show' the white iois( input excitation 11 uniformly distributed between the range ±1.5
nt-m. The output response y is shown in figure B. Figure C shows the PMM test deter-
minant values as a function of the assumed model order. The test yielded a model order
estimate of 4 for the system. This estimate is based on a threshold used for singularity of
PMM. The particular threshold value used in this experiment was found to consistently
under estimate the final curve fit Inodel order which in this case is 6. Figure D presents
the transfer function spectral estimate It = /P,,. Transfer function curve fitting on
h was performed giving rise to the identified parametric niodel of Figure E. The identi-
fied frequencies and dauiping wc(,fhcients are 0.114 Hz, 0.637 Hz. and 2.75 Hz. and 0.4,
0.0364, and 0.00604, respectively. The frequency values agree well with those of the finite
element model of the stricture for two axis of rotation as shown in figuie 4. Figure F
shows the computed output 6' of the identified parametric model subjected to the same
excitation input u. Figure G shows the output error c = y - 6, which has a rn-inm of
2.6 mrad as compared to 10 mrad for y. Finally, the additive uncertainty spectral estimate
A = Ptj/Puu is shown in figure H. It has a maxinii gain value of 11.3S d). Compared
with figure D, the value of A is 10 db less for the more heavily damped lowest mode, and
29 db less for the two lightly damped higher modes. This indicates that i(entification of
their modal dynamics to within 30% and 10%4, respectively, was obtained. Interestingly,
there are two modes, apparent in figure D, that were not fitted. Figure H shows that error
resulted from omitting those mnlodes is even smaller than the fitting error of the identified
modes. This indicates that th,& curve fitting algorithm has properly determined their omis-
sion and produced a reducel-order plant model which minimizes the additive uncertainty.
The transfer estimate ih in figure E, and the a(lditive uncertainty A in figure H are now
directly usable for robist control design.

6. Conclusions

An automated io(tel ()lecr (1'teriinati ii and frequency ,oinaii i(hiitificatio n imi(,t-
odology was presente(l for the identification and control of large fle'xible space structures.
The product mnonment matrix approach was used for the estimation of a lincar inodel order
to avoid statistical m(,thods lwhich are estiniation based, often require processing of large
volumes of data an(d requi ire may r assuiipt.ions on the nature of ineasurcmuncit noise. The
identification methodh)logy was designed to operate with a high degree of a itoll( n)y in an
on-orbit environment, amid was cxp(rimentally verified (,n a facility (esignied for emula-
tion of on-orbit testing a d control scenarios. The eXl)enilnmintal results indic Tred a close
agreement with those of the finite l(ceniit mno(lel of the structure. Furtherm,()re. it, (emon-
strated that ti idlntific;tion algorith i developed produces re(,hc(-(,r'1r ii o(t(els which
minimize a uniform ,, iii(1 on the a(litive uncertainty. Althiugh tlw present investiga-
tion considered identification of single-i npuit single-output trarmsfer flinctions, u mlti-input
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Figure 3. Experimental Results using the Autonomous Frequency Domain System
Identification Methodology.
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multi- output system identification would also be accommodated with the present scheme
by processing each input-output pair separately.
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The complex eigenvectors and eigenvalues of multi-degree-of-freedom system
with moderately nonproportional viscous damping are approximated by a
second-order perturbation method, in terms of the natural frequencies and
mode shapes of the counterpart undamped system and the actual
nonproportional damping matrix. Only the nonproportionality, not the
overall level of damping itself, is assumed to be either moderate or weak.
This new method can be particularly advantageous when designing, or when
identifying, the system damping. Either task requires reanalysis of an
elgenproblem of nonproportionally damped system each time that a different
damping matrix Is considered. The proposed technique requires only the
smaller eigenproblem of counterpart undamped system to be analyzed
directly, and only once. All the necessary explicit formulas are listed.

1. PROPORTIONAL VS. NONPROPORTIONAL DAMPING

Representing the mass of the discretized system by matrix M, the stiffness
by K, and the damping by C, all of size nxn when there are n degrees of
freedom, the equation of non-gyroscopic motion subject to external forces
represented by vector f, may be set up as in Eq. 1 below.

Mx + C + Kx = f (1)

It is assumed that the coordinates x have been so selected that the
matrices M and K are positive definite. Being considered are cases where
C is positive definite and the overall damping level may be high but still
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subcritical. The latter condition may be checked a priori, for instance,
by the criterion of Inman and Andry [1].

Counterpart Undamped System Were the system undamped and freely
vibrating (Eq. 2), the natural frequencies w4 and mode shapes Yoj
(J=l,2,...,n) could be identified as in Eq. 3. Not that I = 1:1.

Nx + Kx = 0 (2)

= Yoj exp(i woJt) (3)

Consideration of Eq. 3 in Eq. 2 leads to the eigenvalue problem, or
eigenproblem, described by Eq. 4. In the latter context, W0 j are
elgenvalues and Yoj are eigenvectors.

(-Wo0_2 + K) Yoj = 0 , J = 1, 2, ... , r, ...n (4)

Yok Yoj = jk (5)

YOk K Yoj = Wo 6Jk (6)

It is assumed herein that the eigenvectors yo. are normalized such that
the orthogonality properties are expressibl4 as Eqs. 5-6. 6  is
Kronecker delta. Eq. 5 is a very common and convenient choce of
normalization in computer Implementation of classical modal analysis.

Counterpart Proportionally Damped System Were the system damped such
that C is of a form C that satisfies Eq. 7, which is Caughey and
O'Kelly's proportionality Pcriterion [21, the free damped vibration and
associated eigenproblem would be described by Eqs. 8-12:

Cp M- 1K = K M-1Cp (7)

M x + C x + K x = 0 (8)

= Yoj exp( Xojt) (9)

(Xo4  N + OjC p + K) Y = 0 , j = 1, 2, .... r, ... n, ... ,2n (10)

Xoj -oj 
+  I Woj 1  J =  1, 2, .... r, .. .n (11)

Oj = j Cp YoJ / 2 w (12)

[ in Eqs. 11-12 are the natural frequencies of the counterpart undamped
system (Eq. 4). With K, K and C as specified after Eq. 1, each
elgenvalue Xo is complex with negahtve real part; I.e., both natural
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frequency wo and damping ratio Eo are positive. An ordering is assumed
here such that the (n+r)-th eigenvalue is conjugate of the r-th.

The essence of damping proportionality is that the mode shapes yo. of
Lhe counterpart undamped system (Eq. 4) are preserved as eigenvectors even
of the damped system (Eq. 10). y, n and y0  are identical, as a
consequence of the ordering of their re p ctive

Complications due to Damping Nonproportionality From the above
introduction, it is apparent why the hypothesis of proportional damping is
convenient. Conceptually, it has the advantage that the real eigenvectors
have the familiar interpretation as mode shapes. Computationally,
iterative numerical algorithm to solve the quadratic eigenproblem of
Eq. 10 is unnecessary; the elgenvalues and elgenvectors are directly
expressible in terms of w0 o, y0 j and Cp, as pointed out in the preceding
two paragraphs.

Much as the proportionality hypothesis is convenient, however, it has
to be abandoned in certain cases. For example, confidence in both
modelling and testing of structural elements or substructures in some
applications has grown to a level where the assembled or complete
structure, materially nonhomogenous as it is, cannot but be modelled with
nonproportional damping, unless C turns out to be actually proportional.
Also, when experimentally identifying the damping of existing structure,
it is more general and hence arguably better to hypothesize that C may be
nonproportional. Thirdly, when designing damping into the structure, the
optimally efficient distribution may correspond to a nonproportional C.

Foss (31 more than 30 years ago pointed out that a generalized modal
analysis can be applied to nonproportionally damped systems. The idea is
summarized below.

Were the nonproportionally damped system freely vibrating, the free
damped vibration and associated quadratic eigenproblem would be described
by Eqs. 13-15 below. Note the formal analogies between (9) and (14), and
between (10) and (15).

Kx + Cx + Kx = 0 (13)

xj = yj exp(Xjt) (14)

( K + X C + K) = 0 , j= 1, 2, .... r, ... , n, .... ,2n (15)

Like Eq. 10, Eq. 15 has 2n pairs of complex elgenvalue X and eigenvector
y. The same ordering is assumed here for both eigenproblems. X may also
be expressed in form analogous to Eq. 11: j
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X- - Wj j+IW (16)

By this analogy, wj may be called pseudo natural frequency, and E , pseudo
damping ratio of mode J. Unlike Eq. 10, however, the eigenvActors of
Eq. 15 are complex and cannot be as readily interpreted as physical
shapes.

Computationally, the eigenproblem of Eq. 15 is much more demanding
than Eq. 10 [3]. Nevertheless, the complex eigenvectors provide a set or
base vectors through which a coordinate transformation enables the
uncoupling of the second-order differential equations implied in Eq. 1,
into first-order differential equations. As pointed out by Foss, the
dynamic response x(t). may be obtained by a generalized modal
superposition:

n
x(t) = 2 Re E P (t) y.

J=l
n
E j ( 2 Re P4 )( Re y) -( 2 Im P.)( Is y ) (17)

J =1

where Re and Im stand for "real part of" and "imaginary part of",
respectively. The scalar function P which might be called modal
complex coordinate or modal participatioA function, is:

P= Y exp (INt) [ t f(T) exp (-A T) dr +

lxo +Cx o +Mi o ] / [y ( 2XP + C ) y ] (18)

where effects of initial displacement xo and velocity t. have been
included. Modal uncoupling is demonstrated by Eq. 18, whereby the complex
participation functions are obtained independently for each mode.

The generalized modal analysis method of Eq. 17, although
mathematically well established, did not find early extensive application
in structural engineering practice. Both computationally and
conceptually, it is more complicated than the classical modal analysis of
proportionally damped systems.

Many studies have since been published that assume the complex
eigenvectors and eigenvalues to be known and concentrate the efforts on
efficiently and accurately calculating the equivalent of P of Eq. 18.
That is not to forget, however, that the computational effort required in
solving Eq. 15 itself, can be much more than the requirement of the
eigenproblem of the counterpart undamped system (Eq. 4), and certainly
more than that of the counterpart proportionally damped system (Eq. 10).
While each of X, C and K is of size nxn, numerical algorithms to solve
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Eq. 15 actually solve the elgenproblem of a 2nx2n matrix. Techniques of
reducing both storage and computing time should be much welcome,
particularly when designing or when identifying the system damping.
Either task requires reanalysis of a quadratic elgenproblem each time that
a different damping matrix is considered.

Some perturbation techniques have been proposed for lightly damped
systems [4-6] that may avoid increasing the elgenproblem size from nxn to
2nx2n. Chung and Lee [7], applying the technique of Meirovitch and Ryland
[61, proposed to use a counterpart proportionally damped system as the
unperturbed system In obtaining the elgenproperties. The present authors
recently proposed [8-101 a general second-order perturbation technique
assuming that the nonproportlonality is moderate, and derived explicit
approximate formulas for the perturbations on frequencies, modal damping
ratios, and nonproportionally damped "modes". The approach Is equivalent
In order, but different in formulation from Chung and Lee's.

Details of the method are presented below and in the cited references.
Computational and conceptual advantages over "exact" solution of Eq. 15
are pointed out where most relevant.

2. MODERATE NONPROPORTIONALITY AS PERTURBATION

The elgenvalues w0 and mode shapes yo of the counterpart undamped system
(Eqs. 4-6) are as umed to be known. Modal matrix To is defined such that
its j-th column Is y0 . Transforming the damping matrix C using the
modal matrix To as in Eq. 19 below, and separating the diagonal and off-
diagonal elements, it Is possible to uniquely Identify the counterpart
proportional damping matrix C (Eq. 20) and damping nonproportionality
matrix Cn (Eq. 21): p

TT
0 C Yo  diag 2 Woj oj + offdiag (19)

C p = YO N diag [ 2 woi~j It N YO oT  (20)

Cn = Y o M offdIag C M YoT  (21)

When the nonproportionality is moderate, as being considered here, the
norm of C Is one order smaller than the corresponding norm of C p. The
quadratic egenproblem of Eq. 15 may now be rewritten as:

M + X.(C +C + K)y= 0 (22)

where Cn is a perturbation due to damping nonproportionality.
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The Unperturbed System From Eq. 22, neglecting Cn , the unperturbed (or
zero-order perturbed) elgenproblem of Eq. 23 below is obtained, which is
identical to Eq. 10:

XN + X C + K) y = 0 (23)
j p

with solutions known from Eqs. 4, 5, 11, 12, 24 and 25.

A X0 (24)

Y1  Yoj (25)

C in Eq. 12 need not be set up explicitly; it Is replaced by C in actual
cRlculation of (unperturbed) EoJ. Note that the eigenvectors (Eq. 25) are
real, while the elgenvalues (Eq. 24) are complex. X,+n  and X) are
conjugates; YOj+n and Yoj are identical.

Second-order Perturbations When the eigenprobles is perturbed by C
the eigenvalues and eigenvectors are assumed to be perturbed in tie
following forms:

Xj = Xoj + Itj + X2J (26)

Y1 = YoJ+ Y1 j
+ Y2j (27)

n
y = E ajk ( 1 - 6jk) Yok (28)

n

Y2J k=l Jk - 6jk) YOk (29)

where the first of two subscripts in Eqs. 26-27 indicates the order of
perturbation. In Eqs. 28-29 for y1  and y2 , it is not necessary toinclude k=j, i.e. y0 . The vector s~t Yet, Yo2 ... , yo constitutes a

complete vector space, in terms of which the expansibh of y can be
written; however is already included in the expansion (Eq. 234 as the
first term.

The perturbations X and X and perturbation coefficients a and
bb are obtainable by: sub0titutiod of Eqs. 26-27 into Eq. 22; groupfig of
tdms of the same order of magnitude to yield three separate matrix
equations, namely zero-order (Eq. 30), first order (Eq. 31) and second-
order (Eq. 32); and application of ortho-normalization properties of
Eqs. 5-6 and expansions Eq. 28-29.

,+JCp + K) Yoj = 0 (30)

(,gj\ R + jCp + K) yj = - (2 Xoj jn + XCp + XojCn) YoJ (31)
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(2 jM + ,o Cp + K) Y2j = - (2 o + lCp + C

((2 )Oj 2j 1 M~) M 1 >2 jC + 1 JCn) Yoj

(32)

Eq. 30 is identical to Eq. 10. As for Eq. 31, after some tedious but
straightforward matrix algebra, it can be reduced to formulas for Xii and
a k; likewise Eq. 32 yields formulas for X 2 and bk. Denotingthe
e ements of C as cjk' the complex perturbations m be elpressed as:

T
cjk = YOk C Yoj (33)

X j = 0 (34)

n
x2j = - \oj k__ ajk( 1 - 6jk ) Cjk / 2 ()tj+ woj oj) (35)

ajk = Xoj cjk / 010k- Xoj) (XOk + 2 wOk FOk + \oj) (36)

n
bjk = A0 a( 1 (i- 6 Jl) ckl / (AOk - kj) (Ok+ 2 wOk Ok+ Ao) (37)

The deno~inators of Eqs. 36 and 37 indicate that eigenvector
perturbations are particularly large when both woj' wOk and 'oj' Ok.

The approximated (perturbed) complex elgenvalues and eigenvectors may
be rewritten explicitly in terms of their respective real and imaginary
parts. The forms in Eqs. 38-40 below are so chosen that the real-valued
perturbations may take on some physical interpretation. For example, a
may be identified as nonproportionality-induced perturbation of natural
frequency.

W =oj + tj (38)

F, Fo0 1 + j (39)

n n
Y + E rjk YOk + I K. njk Yok (40)Yj oj k=l k=l

n
Re y= Yoj K rjk YO k (40a)

n
Imy nj (40b)

k=l
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a. and 2 are nonproportionality-Induced perturbations of natural
f~equency anA modal damping, respectively. As for the elgenvector, Eq. 40
states that an eigenvector being complex Is equivalent to damping-induced
"coupling" of natural modes. As the perturbations 4 k and nik are

generally not the same for all pairs of j and k, the relative values of
these perturbations Indicate which natural modes of the counterpart
undamped system are significafitly coupled due to damping
nonproportionality. This can be a useful new way of understanding the
complex elgenvectors.

The formulas for a J, ki , 4k and n k are summarized below. For

compactness of expressions, Eqs. 41-45 are Introduced as definitions.

0 0j W 0 j Eoj (41)

40j = W0j 1 -l 2 (42)

RJk= [(ok- °o)2 + (,P0 - Po) )q,j - {2()/ (43)

Ijk= (0k1 - o ) )oj + {2(qk - 00j o j )qj ]/lk (44)

DJk= { (0ok - ooj)2 + (Po 2 - €4) 2 + ( 2(0o k  oj) 'oj} 2 (45)

j= k (J j k3 1 0 *j~ 0~ / (6nYJ = k E ( Rj k  4,0J O~ ) cj2 / 2%oj (46)

n

Kj = -E ( R k O  [ c I Jk ) C2 / 21oj (47)

a. = E [ ( 1 + yj) 2 
- ( 1 + K)2] + ( 2c + K 2 ) (48)

Y 2 -2 ) / ( 1 + (49)

n
4jk Rcjkjk + ( R RJ-I IjklI) C l kl (50)

njk= Ijkcjk + ( RjkIjl +jkRj) C31 ckl (51)

3. FURTHER DISCUSSIONS

With Eqs. 4-5, 11-12 (using C in place of C ), 26-29, and 33-37, the
complex eigenvectors and eigenvalues of Eq. ?5 have been expressed in
terms of the real eigenvectors, or mode shapes, and real eigenvalues, or
natural frequencies, of Eq. 4. Eqs. 38-51 give the explicit approximate
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formulas for the perturbations on natural frequencies, damping ratios, and
mode shapes.

The latter equations may appear cumbersome; but they are in fact
explicit formulas ready for computer coding. These may be added easily to
standard subroutines that are originally intended for the eigenvalue
problem of Eq. 4 subject to eigenvector normalization of Eq. 5. Unlike in
numerical algorithms to solve Eq. 15, no iterations are required except in
the solution of Eq. 4 Itself. This can mean a big reduction in the
required numerical calculations, especially when several eigenproblems
have to be analyzed with the same M and K, but different C's.

For two-degree-of-freedom (2DOF) and three-degree-of-freedom (3DOF)
systems, even the solution of the counterpart undamped elgenproblem
(Eq. 4) can be obtained in closua form, allowing completely explicit
approximate formulas for the pseudo natural frequencies, psebdo modal
damping ratios, and complex modes. Such explicit approximate formulas for
close-coupled 2DOF system have been reported by the authors [10].

Numerical examples and parametric studies are found in References [81,
[91, and [101, with discussions of the accuracy of the present method. It
has been shown through examples that the absolute values of the
perturbations aj, J' r. k and ik Indirectly serve as indicator of

potential error due to the approximation inherent in the method.

It has also been shown through simple examples [81 that while the
nonproportionality being considered by the method Is moderate at most, the
response error due to disregard of such moderate nonproportionality can be
very significant.
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LIST OF SYMBOLS
Matrices

C = damping matrix
C = offdiagonal matrix from transformation of C by To
C = nonproportional part of C
Cn= proportional part of C
Kp = stiffness matrix
M = mass or inertia matrix
Y0= modal matrix where column j is mode shape Yoj

Vectors
f(t) = external force
o = initial displacement

x = initial velocity
x4?t) = displacement
x(t) = velocity
x(t) = acceleration
y complex J-th eigenvector

J= J-th mode, mode shape, or real eigenvector
j complex first-order perturbation on J-th mode

Y2j = complex second-order perturbation on J-th mode

Common scalars
I = unit Imaginary numbeL
t = time
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Scalars pertaining to mode J
P (t) = complex coordinate or participation function
ai = perturbation on natural frequency
R' = perturbation on damping ratio
Y- = perturbation paired with K (Eq. 46)
i= perturbation paired with A (Eq. 47)
X" = complex perturbed eigenvalfe
AJ. = complex unperturbed eigenvalue\0  = complex first-order perturbation on elgenvalue
XA1 = complex second-order perturbation on elgenvalue

EoJ = damping ratio when proportionally damped
F. pseudo damping ratio
o = absolute value of real part of Ao (Eq. 41)

4oj = imaginary part of Ao0 (Eq. 42)
W = natural frequency
W = pseudo natural frequency

Scalars relating modes j and k
Dk = (Eq. 45)
1 = (Eq. 44)
Rk = (Eq. 43)jk = complex coefficient of first-order perturbation on j-th mode
ajk = complex coefficient of second-order perturbation on J-th mode

-jk
c = element of C (Eq. 33)
6 jk = Kronecker delta
1jk = perturbation coefficient on real part of J-th mode

njk = perturbation coefficient on imaginary part of J-th mode
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ABSTRACT

The dynamic response and vibration transmission
characteristics of structures are determined by three
inherent properties; mass, stiffness and damping. Of these,
damping is least understood and most difficult to model,
measure, and modify. Currently, the Complex Modulus test
method is the most widely used to predict the relative
effectiveness of a particular material. The one disadvantage
of the method is that it cannot predict how the material will
actually perform for a given application. In an effort to
analyze the performance of constrained layer damping on a
particular component, time averaged holographic
interferometry was employed. Interferometry allowed imaging
of the displacement amplitude field distribution of the
component resonant modes. The test method also established a
correlation between the interferometric modeshape results and
animated modal analysis. The following paper discusses the
interaction of these methodologies.

TEST TECHNOLOGY AND OPERATIONS OVERVIEW

This project which began mid-year 1988 was conducted by
the Test Technology & Operations group at the GM - CeP°C
Engineering Center as part of an effort to address noise,
vibration and durability goals of design and development
powertrain programs. Noise and vibration personnel utilize an
extensive amount of sophisticated engineering tools to reach
these targets. These tools provide the data acquisition and
processing capability to understand system dynamic
characteristics as they relate to steady state response, free
vibration, onset and decay of transients, and mode
instability/self-excited vibration. Damping plays a
significant role in addressing component fatigue life,
airborne and structural borne noise, as well as overall
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increased system impedance to provide greater vibration
isolation. The most important responsibility of the group is
to develop appropriate state of the art techniques to improve
overall vehicle characteristics related to powertrain
perfcrmance design criteria.

THE INTERACTION OF VIBRATION AND DAMPING

A vibrating structure at any point in the vibration
cycle contains kinetic and potential (strain) energy
associated with modal mass and stiffness values. Realistic
behavior involves energy dissipation as well. The non-
conservative nature of mechanical energy conversion by
definition is "damping".

Unlike mass and stiffness, damping does not manifest
itself as a single phenomena. The mechanisms may include
interface friction, fluid viscosity, turbulence, acoustic
radiation, eddy currents, magnetic hysteresis, and mechanical
hysteresis (material damping).

The primary effects of increased panel damping are
reduction of vibration amplitude at the system resonance,
more rapid decay at onset of free vibration, decreased
spatial conduction of vibration (increased system impedance),
and increased isolation during steady state response.

Because damping incorporates several mechanisms to
manage the transport of energy many methods of measurement
are available including loss factor, damping capacity,
reverberation time, decay rate, logarithmic decrement, and
spatial decay rate. All of these interrelated methods
quantify the damping estimate with the degree of correlation
and accuracy dependent on the testing method employed, test
specimen, experimental control tolerance (i.e. frequency,
temperature, and vacuum), and the engineering interpretation
of data.

If damping measurements are carried out on a component
interacting with a larger structure, the parameter measured
is the "effective damping" accounting for the total system
effect. The more complex the modeshape, as well as
effectively controlling several modes with a single damping
design, presents a difficult optimization challenge because
of the need for intelligent and compromising selection of
attachment and coverage areas.

The loss factor associated with damping (the most
commonly used damping parameter) of most metals and
structural materials is usually quite low and relatively
independent of amplitude, temperature, and frequency provided
stress levels are under the fatigue limit, temperatures well
below the melting point, and excitation frequencies are low.

In contrast to this linear and stationary behavior,
viscoelastic compounds have elastic moduli and loss factors
strongly related to frequency, temperature, and amplitude.
These materials are characterized by three regions
illustrated in Figure 1 found on the following page.
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Figure 1: Loss factor and elastic moduli characteristics of
damping materials.

The rubbery region offers little reaction force in
generating any hysteretic loss to applied loads and no
dissipation. In the glassy range the material behaves
according to linear elastic theory with complete energy
conservation. In the transition range maximum gains of
damping occur with non-recoverable energy loss. This
behavior is typical of most polymers and elastomer materials.
The elastic modulus and loss factor can vary significantly
depending on bond site inhibiting plasticizers and bond
initiating fillers. The resulting change in dynamic
properties of two nominally identical samples from different
suppliers or different batches from the same source can
result in dramatically different damping effectiveness.

Bending of a panel, which has a number of layers of
damping materials, generally causes each layer to bend,
extend, and deform in shear. With each type of deformation
in each layer there is some storage of strain energy
associated with it as well as energy dissipation. It is
important to realize that when designing the matched
performance of a damping material, the effectiveness of the
material is dependent on the product choice, modeshape
characteristics, bond integrity, and the forcing function
excitation frequency in the operating environment. The
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material should undergo the same flexural strains as the
panel surface when fixed directly to the structure. The
method of bonding will affect the composite damping
performance, since any deformation/displacement taking place
within the adhesive layer will reduce the strain and
dissipation energy in the damping sheet.

Modal analysis of discrete and continuous systems
depends on solution of the characteristic equation of the
eigenvalue problem. The necessary assumption for solution is
no damping. By incorporating the approximation of mass
and/or stiffness linear proportionality to damping or a
lightly damped system (matrix cross terms are zero by
Basile's theorem) the damped response solution can be
obtained. The concept and convenience of damping expressed
by vibration theory is explained by Figure 2.

F = A sin wt t " .'-
0 H-0

-. 0.05

010 0i I

m ~

I! , ro e I
Frrgq~y c' ml.

EQUATIONS :

(1) F sin w t ", mx + cx + kx
0

iwt
(2) e - coswt + isin wt

(3) X - Filk

[1-(w/w 212 + [2 (w/w) 21

k n

(4) tan 0 - 2:(w/w) Legend: mdamping factor-c/c

71 oo- (w/w )

1- (v/v 2 phase angle

Figure 2: Single degree of freedom oscillator theoretical
model and governing equations.
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The classical single degree of freedom oscillator with
damping has an equation of motion under steady state harmonic
forces described by equation 1. The response solution must
take a form of equation 2. If terms involving the sine and
cosine coefficients are equated after substitution of
equation 2 into equation 1 the amplitude and phase
relationship can be described by equations 3 and 4. The
response is characterized by a ratio of the excitation force
ratio to a combined stiffness involving the physical spring
element and damping term. At relatively low excitation
frequencies (relative to natural frequency) the displacement
depends only on the force oscillatory amplitude and the
spring constant. At high excitation frequencies the response
is determined by the force amplitude discrete mass value and
the excitation frequency squared. The system response is
then bounded by the physical elements of the mass and spring.
At or near resonance the loss factor plays a significant
role. As the frequency of excitation approaches the natural
frequency with no damping present the denominator approaches
zero with theoretically infinite response. With damping or
the loss factor present, the system "Q" application is not
infinite with the degree of response inversely proportional
to magnitude of damping. It is important that the loss
factor is also varying with the excitation frequency. The
overall damping design sensitivity is highly dependent on the
ratio of the excitation frequency to the natural frequency.

An alternative way of expressing classical vibration
modeling is by the use of complex stiffness notation. Most
techniques for measuring complex stiffness use a material
sample as a spring. The most widely used test method is the
frequency response method or the Complex Modulus test method
(American Standard Test Method E756-83). In this method, a
variable frequency sinusoidal force is applied to the test
sample and the amplitude of vibration is plotted as a
function of frequency as shown in Figure 3 on the following
page. The test method is versatile in that it enables damping
measurements to be made over a range of frequencies as well
as temperatures. The actual test method can differ among
suppliers because of their different substrate bar size which
produces different results for a particular damping material.
Figure 4 on page 7 shows a schematic diagram of the Complex
Modulus test apparatus. The test procedure is relatively
simple. First, the damping material is bonded to the Oberst
bar in a manner suitable for the material. The bar is then
mounted into the test jig. The clamping force around the root
of the bar simulates a fixed boundary condition. The
transducers are positioned approximately 1mm away from the
sample bar. Either a sinusoidal (sweep) or random (bandwidth)
signal can be applied to the excitation transducer by means
of a power amplifier/signal generator.

The frequency response of the bar is measured by the
displacement, velocity, or acceleration transducer and
recorded as a function of frequency and amplitude for a given
temperature. The "effective damping" is obtained by applying
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Figure 3: Example of data generated from Complex Modulus
Test (Reduced Frequency Nomogram).

the half power bandwidth (3 dB down) at each resonant mode
and taking the ratio of the frequency band defined by the
half power points to the center resonant frequency to define
the loss factor value. The test method assumes linearity,
however high levels of excitation can generate non-
linearities in the response leading to unreliable data. The
amplitude of the force signal applied to the specimen is kept
constant as a function of excitation frequency. The loss
factor of the base metal is assumed to be zero (0.001) since
it is at least a magnitude less than the composite bar. The
material loss factor is then calculated from the composite
measurement compensated by the Oberst bar damping value.
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Figure 4: Schematic of complex Modulus test apparatus.
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~Base structure - The general flow and approach to damping

optimization is shown in Figure 5 on the following page.
The base component chosen is predicated on prior testing

of the overall system with results that suggest high
sensitivity of the component to damping modifications and
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DeinEvaluation of Component
validation design modifications modifications

Figure 5: Flowchart of damping design optimization.

potential improvement of the dynamic response
characteristics. For example, the transmission oil pan
(Figure 6) indicated a high degree of noise contribution
during various operating speeds based on sound intensity
measurements and sound power rankings of the overall
powertrain system.

I TOTAL: 83.5 d/Y,'-+J
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Figure 6: Data from semi-anechoic noise source testing.
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No finite element analysis methods were used on this
project application due to the hardware component
availability. The modal analysis performed on the baseline
pan identified resonant frequencies of the oil pan and
corresponding modeshapes associated with excitation speeds
identified by the signature analysis. The amount of baseline
"effective damping" was also calculated using the half power
bandwidth method on each resonant frequency.

The driving point frequency response function from the
modal analysis provided the necessary resonant frequency
information (Figure 8) to perform time averaged holographic
interferometry and image the modeshape amplitudes already
animated by modal analysis (Figures 9,10,11 on the following
pages).

8 FREO RESP H2 MAC STORED MAIN Y. 53.
55. 0 LIN X& 1296Hz

Xe ONH 1.ekHz LIN
StTUP S1O VA. 5-O . . . . . . . . . . . . . d .1 . .

v, s Mode 3

Mode 2
4 Y"A2 a_ _

40

1U

10 Mode 1

0 -
0 0.2i -0.4k, 0.6k 0. 31 1. C t2 1. 4k 1.dl 5.3

TOM 440 TRANSMISSION PAN DRIVING POINT FRF

Figure 8: Driving point frequency response function of the
baseline transmission oil pan.
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Figures 9, 10, 11: Animated modal analysis modeshape images
of baseline transmission oil pan.

An in depth review of interferometric techniques will
not be discussed (reference 1), however a brief discussion is
essential to appreciate the value of this supplemental
method. The component to be imaged is placed on an isolation
table and fixtured with an excitation device (an
electromagnetic shaker placed normal to the pan surface) that
is decoupled (isolated) from the optical elements on the
table. The component is illuminated with a laser source (20mw
632.8nm HE-NE) with the reflected object light recorded on a
high resolution photographic plate. Approximately 10% of the
illumination bear., is split to a second optical reference path
that simultaneously exposes the plate. The plate is then
developed by standard photographic techniques. Alternative
recording media may be used such as thermoplastic cameras
(used during this project). The choice is one of pure
convenience. The recording process requires a second
reconstruction or readout procedure to view and utilize the
holographic image. This is achieved by illuminating the
developed transparency plate with the original reference beam
while viewing the plate. The hologram imaged will be the
exact duplicate of the original component in three
dimensions. The basic steps in forming the hologram can be
used to record the time averaged (averaging of the maximum
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and minimum displacement over time) dynamic response of the
object with the difference being the harmonic excitation of
the component et it's resonant frequency during exposure. The
reconstructed hologram will then contain both the original
three dimensional image as well as displacement contours of
the component response corresponding to bright and dark
interference bands superimposed on the image. It is this
information that is interpreted in conjunction with modal
analysis. Time averaged interferometry images are shown for
three modes in Figures 12,13 and 14.

Figure 12 - Mode 1

Figure 13 - Mode 2
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Figure 14 - Mode 3

Figures 12, 13, 14: Holographic interferometry modeshape
images of baseline transmission oil pan.

Selection of Damping Materials - After the resonant mode
frequencies have identified along with environmental
temperatures, appropriate damping materials and associated
loss factors can be chosen from reduced frequency nomograms
established by the damping supplier. A major caution at this
stage of the development program is that the supplier test
specimen construction and geometry, along with the particular
specimen testing method, will generate nomogram data based on
resonant modes and test specimen dynamic characteristics
unrelated to tice product design. This deficiency can be
partially offset in the development cycle time by accurate
placement of the damping layer, optimized boundary
constraints, and secure bonding to the component.

Component Modifications - The animated modeshapes of the
baseline transmission oil pan described the relative
amplitude and phase as well as an estimate of nodal
locations. The greatest shortcoming of this is the degree of
resolution that is defined by a discrete measurement
technique. The resolving capability is determined by the
number of frequency response functicn measurements on the
component surface. As the natural frequency/modeshape
complexity increases so does the requirement for more data.
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The interferometry method overcomes this limitation by the
inherent full field imaging characteristics. The overall
amplitude distribution, maximum displacement, and nodal
boundaries are completely described. The first step in
determining the component area to be treated is locating the
nodal boundary for the modeshape of interest. For a
combination of modeshapes the compromise involves their
superposition as well as effectively controlling the maximum
contribution mode. This can be done by careful analysis of
sound intensity data. Once the application boundary is
established the damping material and constraining layer can
be applied.

Evaluation of the Design Modification - The modified
component requires only a new driving point frequency
response function to calculate the increase in damping and
the changes in resonant frequencies associated with the
addition of mass, damping, and residual stiffness from the
constraining layer. Modal analysis is not required since the
remaining information is obtained by re-imaging the new
modeshapes with interferometry. Reductions in amplitude can
be verified by decreased fringe density. Any disbonding
between the damping material and structure will be evident by
abrupt discontinuities in contour shape between successive
fringes. A simple comparative fringe analysis can be
performed with the assumption of a unity sensitivity vector
(summation of the observation and illumination vector plane
directions) and all displacements normal to the component
surface. The fringe patterns are assigned and counted with
the 0th order fringe defined as the brightest fringe located
on the image. This is referred to as the first root of the
0th order Bessel function and is the optical analog of
vibration nodes. Each successive dark to light fringe is
assigned an increasing root number. The displacement at any
point on the surface is then the root number x laser source
wavelength/2. For a component location of the 9th root fringe
at a wavelength of 632.8nm, the out of surface plane
displacement is 2,847.8EXP(-9) meters.

Design Validation - Design/release depends solely on
validation of the component. Assurance of meeting/exceeding
design and development targets can include noise and
vibration criteria, fatigue and durability goals, corrosion,
and other requirements of the system that maybe influenced by
the damping design. Regardless of the degree of design
optimization the final measure of success relies on the
integrated performance of the total system and the realistic
gains achieved. Very rarely does this approach theoretical
predictions and initial expectations. The final project
results comparing the baseline and modified oil pan are
summarized in Figures 15 thru 19, on the following pages,
showing the difference in driving point frequency response
functions, increase in damping, and decreased dynamic
response of the resonant modes.
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Figure 15: Comparative frequency response functions between
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PRODUCTION vs. CLAM TRANSMISSION PAN

Comparison of resonance frequency, damping,
and frequency response function amplitude
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Figure 16: Comparison of damping coefficient (loss factor)
between baseline and modified transmission oil pan.
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SUMMARY OF FIGURES

Figure 1 - Loss factor and elastic moduli characteristics of
damping materials.

Figure 2 - Single degree of freedom oscillator theoretical
model and governing equations.

Figure 3 - Example of data generated from Complex Modulus
Test (Reduced Frequency Nomogram).

Figure 4 - Schematic of Complex Modulus test apparatus.
Figure 5 - Flowchart of damping design optimization.
Figure 6 - DAta from semi-anechoic noise source testing.
Figure 7 - Holographic setup in the Optical Test lab.
Figure 8 - Driving point frequency response function of the

baseline transmission oil pan.
Figure 9,10,11 - Animated modal analysis modeshape images of

baseline transmission oil pan.
Figure 12,13,14 - Holographic interferometry modeshape images

of baseline transmission oil pan.
Figure 15 - Comparative frequency response functions between

baseline and modified transmission oil pan.
Figure 16 - Comparison of loss factor between baseline and

modified transmission oil pan.
Figure 17,18,19 - Interferometric image comparison between

baseline and modified transmission oil pan.
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Abstract

The strain amplitude dependent damping of binary aluminum-indium alloys containing
nominally 0.6 to 17.3 weight percent indium was studied. A DuPont Dynamic Mechanical
Analyzer model 983 was used to measure the damping capacity of these materials. Pure
aluminum (99.99%) exhibited strain dependent damping at strain values as low as 70 PE.
The addition of 0.6 weight percent indium reduced the strain independent damping by a
factor of 2, but the strain dependent damping was equivalent to that of the pure aluminum.
Binary aluminum-indium alloys containing 4, 8, 12, and 16 weight percent indium
exhibited a general increase in loss factor with increasing indium content; however, the
strain dependent damping was no greater than that of the pure aluminum sample. No
significant increase in damping was observed when the binary alloys were tested at
temperatures above the melting point of indium. Two damping peaks were observed near
the eutectic melting point when tested at 10 Hz and differential scanning calorimetry
verified both of these peaks as due to the melting of the indium inclusions. It was
concluded that the higher temperature damping peak was associated with smaller indium
inclusions and that the damping peaks were related to the solute segregation associated with
the binary eutectic reaction.
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Introduction

The typical structural aluminum (Al) has a high stiffness, but a low specific damping
capacity. The typical loss factor for a precipitation hardened Al- based alloy is between 10-3
and 10 4. Metal matrix composites have shown increased damping [1] but these materials
can not be considered high damping because they have loss factors less than 10-2 [2]. An
alternate approach to the development of a high damping composite would be by the
incorporation of a viscoelastic fiber in addition to the stiff fibers used for reinforcement.
Thus, the matrix would provide the structural stiffness and the various fibers would
provide the desired damping capacity and the added stiffness. Although the composite
material would show a lower stiffness than the stiff metal matrix composite, the increase in
damping capacity may be of greater importance.

Indium (In) is a viscoelastic metal with an ultimate tensile strength of 3.1 MPa (450 psi)
at room temperature.The loss factor of In has been reported to vary from 0.06 at room
temperature to 0.2 at 1000 C [3]. The melting point of pure indium is 156 0C and when
combined with Al forms an immiscible alloy system, as shown in the phase diagram in Fig.
1. An alloy of 17.3 weight percent In will solidify by a monotectic reaction ( L -> Al + L2)
which produces a continuous Al-matrix with an In-rich (L2) entrapped liquid. At 156 'C,
the In-rich liquid will solidify by the eutectic reaction L2 -> Al + In. This final eutectic
reaction will normally produce inclusions which are single-phase, i.e. pure indium. The
small weight fraction of Al produced during the eutectic reaction is "divorced" to the pre-
existing Al-matrix. The resulting microstructure will consist of an Al-matrix with a
dispersion of In inclusions.

It is the purpose of this paper to examine the effect of a viscoelastic inclusion, such as
In, on the damping capacity of Al. It is expected that the composite microstructure will
demonstrate strain dependent damping as a result of micro-plasticity (dislocation motion)
within the inclusion. In addition, high temperature loss factor measurements will be used to
determine the damping associated with liquid inclusions. It is also expected that the first
order transformation (the eutectic reaction) at 156 °C will produce both an anomalous
modulus effect and a frequency dependent loss peak. The following formula from Nowick
and Berry[4] describes the relaxation time, t, as a function of the radius, r, of the second
phase particle for a two phase material during a first order transformation.

t=r 2 /3DVf (1)

Where D is the diffusivity and Vf is the volume fraction of the second phase particle. It
should be noted that the relaxation time will be strongly dependent upon the size of the
second phase such that smaller particles would exhibit a shorter relaxation time.

Extperimental Procedure

Binary Al-In alloys, with nominal compositions 0.6, 4, 6, 8, 12, and 16 weight p'ercent
In, were arc-melted in an argon gas atmosphere. These alloys were prepared from In, and
A), metals which each had a metallic purity better than 99.99%. The total weight of each
arc-melted button was below 10 g to assure a homogeneous melt. The Al-17.3% In alloy
was produced by induction melting in an argon gas atmosphere and was solidified at a slow
rate using a ceramic insulator to produce a coarse distribution of In particles. Each sample
was then cold-rolled 30%, annealed at a temperature of 532°C, and then cold-rolled and
annealed again to produce a nominal sample thickness of lmm. Rectangular-beam coupons

JDA2



were cut from the rolled slab, using a diamond saw, to produce a sample shape with
nominal dimensions 40 mm x 10 mm x 1 mm.

A DuPont Dynamic Mechanical Analyzer (DMA) model 983 was used to measure the
damping response of the test coupons. At room temperature, and a fixed frequency of 0.1
Hz, the maximum strain amplitude was varied from 20 to 300 pe by changing the
oscillation amplitude and clamping distance between the pivot arms, see Fig.2. The driver
arm produces a sinusoidal displacement inducing both a shear and bending stress. The
damping capacity was measured as the loss factor which is equal to the tangent of the phase
angle, tan 8, between the stress and the strain. Elevated temperature tests from 100 - 200*C
were conducted at a strain amplitude of 70 ple at both 1 Hz and 10 Hz. A heating ramp of 1
'C per minute and a helium gas atmosphere were used to minimize the temperature lag of
the sample with respect to the furnace-controlling thermal couple. The eutectic melting
temperature of the binary alloys was established using a Perkin-Elmer differential scanning
calorimeter model 7.

Metallographic samples were prepared by mechanical polishing and etching in a hot
aqueous solution of NaOH. Cross-sectional samples were cut to view the long transverse
microstructures of the binary alloys. Electron microscopy studies were performed at The
University of Michigan Electron Microbeam Analysis Laboratory. Thin foils for
transmission electron microscopy were prepared by twin jet electropolishing in a solution
of 10% nitric acid (by volume) and methanol.

Results

The room temperature damping results for the pure-Al and binary Al-In alloys are
shown in Figs. 3 and 4. Each alloy exhibits a transition to a strain amplitude dependent
damping at approximately 70 Wie. A comparison between the Al and the binary Al-0.61n
alloy (all compositions are in weight percent) is shown in Fig.3. The addition of 0.6 In
reduced the strain independent damping by a factor of 2, but the strain dependent damping
was equivalent to that of the pure Al. The strain independent damping of the pure Al was
also greater than the binary Al-In alloys, with the exception of the two highest In
concentrations, i.e. Al- 121n and Al- 161n. In general, the damping capacity of the Al-In
alloys increased with increasing In content, see Fig. 4. The microstructures exhibit
elongated stringers of indium aligned parallel with the rolling direction as shown in Fig. 5.

The results of a typical 1 Hz temperature scan are shown in Fig. 6 for an Al-6In alloy.
A first order transformation was observed between 160 and 170'C. The change in the
storage modulus with respect to temperature shows an anomalous behavior in this
temperature range. The eutectic melting temperature of 156 *C was verified by differential
scanning calorimetry (DSC). However, the DSC results also revealed a second melting
peak at 160 *C as shown in Fig. 7. Fig. 8 shows that both melting peaks were observed
with the DMA during a 10 Hz temperature scan. The loss factor associated with this
transformation did not vary significantly with respect to increasing the weight percentage of
In as shown in Fig. 9. Although the total damping appears to increase with In content, the
difference between the peak height and the background is nearly constant.

At the eutectic melting temperature, the binary alloys exhibit strain dependent damping
as demonstrated by the Al-17.3In alloy in Fig. 10. This particular alloy had a coarse
distribution on In particles due to its slow cooling rate from the melt. The temperature scan
in Fig. 11 shows a large damping peak to background ratio at lower frequencies for the Al-
17.3In alloy. When measuring the loss factor at the eutectic temperature for various
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oscillation frequencies, the relative height of the peak was observed to increase from values
of 0.002 at 1 Hz to 0.014 at low frequencies of 0.1 Hz.

Discussion

The strain dependent damping of the Al-In alloys appears to be associated with
dislocation motion in both the Al-matrix and the In-particles. Thus, the damping of the AI-
In alloys increases with increasing In content, but the total damping is less than that of the
pure Al. This may indicate that the damping contribution from the matrix decreases with
increasing In content. This effect may be explained if we associate the magnitude of the
matrix damping with a mean-free-path of dislocation motion. Upon the addition of second
phase particles, the mean-free-path of the dislocations will decrease in two ways: the In-
particles will inhibit the grain size during annealing and the In-particles will act as
dislocation traps. Both of these effects are a function of the volume fraction of the second
phase. Therefore, the damping contribution from the matrix would be expected to decrease
as the volume fraction of second phase is increased. A minimum would then be expected
for the Al-In alloys since the damping contribution from the In-particles would increase
with increasing volume fraction. This minimum is approximately at the Al-41n
composition.

The addition of In also affects the strain independent damping of the Al-matrix, as
shown in Fig. 3. Indeed, the addition of a very small amount of In (0.6%) reduces the loss
factor to one-half that measured for pure Al, but this effect appears to be related to
processing history. Electron microscopy studies have just begun to examine the differences
in structure which results from the addition of In and the subsequent processing. For
example, a second Al-0.61n alloy was processed with out annealing and the microstructure
is shown in Fig. 12. The microstructure shows a fine subgrain structure with In particles
on the subgrain boundary. However, this particular alloy shows a much higher loss factor.
In fact, the loss factor measured for this sample was constant, with tan 8 = 0.016, up to a

strain amplitude of 150 .e. Thus, further microstructural work is required before any
conclusions can be made with regard to the strain independent regime.

The damping peak observed between 160 and 170'C is believed to be related to the
eutectic melting temperature observed at 156 0C by the differential scanning calorimeter. The
difference in temperature is a reflection in the thermal lag associated with the DuPont DMA.
The pivot arms are made of stainless steel and are in direct contact with the sample. Thus,
the pivot arms act as a thermal reservoir with respect to the sample. This effect was
minimized by flowing helium gas through the furnace as the temperature was ramped. The
thermal lag for the Al-In samples varied between 4 and 10 C.

Equation 1 provides a means to calculate the test frequency at which peak damping
would be observed for a 2-phase microstructure going through a first order transformation.
In the present case, the reaction is a eutectic where the In alloys with the surrounding Al-
matrix to form a liquid. Self-diffusion of In in the liquid and in the solid state near the
melting point is approximately 10 -5 cm 2/s and 10 -9 cm 2/s, respectively [5]. If the typical
diameter of the In inclusion is taken as 2 gim, and a volume fraction of 0.02 is assumed,
relaxation times of 170 and 0.0 17 seconds are expected using the self-diffusion rates for In
in the solid and liquid states, respectively. This would correspond to test frequencies of
approximately 0.01 Hz and 60 Hz for the solid and liquid states, respectively. Resolution
of the damping peak was obtained at a test frequency of 0.1Hz, which would indicate an
intermediate diffusivity. The diffusion rate of Al in In would be expected to be higher than
the self-diffusion of In in the solid state since the atomic radius of Al is smaller than that of
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In. Thus, a diffusivity between 10-7 and 10-8 cm2/s may be reasonable. In terms of order-
of-magnitude calculations, this would produce a relaxation time on the order of 10 seconds,
or a test frequency of 0.1 Hz. The peak observed at the higher test frequencies may then be
related to a smaller indium particle. It should be noted that the melting temperature of In is
size dependent [6]. This effect is easily demonstrated by differential scanning calorimetry
of an arc-melted Al-121n alloy, see Fig. 13. The moderate solidification rate will produce a
fine structure of In particles which melt at a higher temperature. Upon cold-working, and
subsequent annealing, the number of high melting In particles is reduced, as observed in
the DSC results reported in Fig. 7.

Conclusions

The addition of In to Al exhibited a general increase in loss factor with increasing In
content; however, the strain dependent damping was no greater than that of the pure Al
sample. A precipitation hardening alloy would be more appropriate for evaluating the
damping contribution resulting from the addition of a viscoelastic inclusion. No significant
increase in damping was associated with liquid metal inclusions, but a large damping peak
was observed which was associated with the eutectic transformation and the diffusion of Al
solute in the In inclusions.
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Fig. 1: Phase diagram of the Al-In binary system showing a liquid immiscibility gap.
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Al-161n for several strain amplitudes.

JDA7



W)p0

f~z cd-

S 71

~I t DEL



.1.4

A1-6%In, 1 Hz fixed frequency

56 Strain - 70 gz 
0.025-

Tan Delta 1.2

E' (GPa) 0.020

" 54- 
1.0

. E"(GPa) 0.015E- -_ 0.8
S52, T 0.010. 0

. 0.6

0.005 0.4

40.2
100 120 140 160 180 200 220

Temperature (C)

Fig. 6: Damping results from 100-200"C for the AI-61n alloy using a fixed
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The smallest peak (140"C) is associated with solid nucleation of the finest indium particles.
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Fig. 12: Bright field transmission electron mcrograph of the Al-O.61n alloy
showing indium particles on a subgrain boundary.
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ABSTRACT

Type 6061 aluminum alloys containing between 0 and 5.2 volume percent indium

and pure indium samples were fabricated. Each sample was characterized by

metallographic and analytical electron microscopy and the damping capacity and

storage modulus was measured. The model proposed by L.G. Nielsen was used to

calculate the damping capacity and storage modulus of the alloys using the

damping capacity and storage modulus of the constituents. The damping

capacity of the Al-6061-In-T6 alloys were higher than the Al-6061-T6 alloy and

increased with increasing indium content. The Nielsen model gave a good first

approximation of the damping capacity and storage modulus of the alloys.
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ABSTRACT
Type 6061 aluminum alloys containing between 0 and 5.2 volume percent indium
and pure indium samples were fabricated. Each sample was characterized by
metallographic and analytical electron microscopy and the damping capacity and
storage modulus was measured. The model proposed by L.G. Nielsen was used to
calculate the damping capacity and storage modulus of the alloys using the
damping capacity and storage modulus of the constituents. The damping capacity
of the Al-6061-In-T6 alloys were higher than the Al-6061-T6 alloy and increased
with increasing indium content. The Nielsen model gave a good first
approximation of the damping capacity and storage modulus of the alloys.

INTRODUCTION
An important characteristic of a structural material is it's damping capacity.
While metallic materials exhibit adequate stiffness for structural use, the
damping capacity may be quite low, having a typical loss factor on the order of

10 - 4 . In contrast, polymeric maLerials will exhibit very high damping,
with loss factors on the order of one, but rather low stiffness. Their
stiffness can be increased with the use of fillers and fibers but the resultant
resin matrix composites exhibit lower damping properties, with loss factors on

the order of 10-2. Attempts made to improve the damping response of the
resin matrix composite by adding rubber did not result in significant
improvements (1]. It was shown that synergistic effects from interactions
between the rubber and the resin were responsible for the lower than expected
damping behavior.
In the case of metal matrix composites, work by Ray, Kinra, Rawal and Misra has
shown that the damping of aluminum alloy 6061 is increased by the addition of
graphite fibers [2]. However, the increase in damping was low considering the
high volume fraction (0.34) of graphite. Recent work by Diehm, Wong and Van
Aken has shown that the addition of a viscoelastic inclusion (indium) to pure
aluminum will produce high damping materials [3], but it was uncertain whether
the principal damping resulted from the matrix or the inclusion since both have
high damping capacities.
In the present paper the addition of indium to an age-hardening alloy, such as
6061 aluminum, was examined in order to discriminate between inclusion and
matrix damping. The dynamic properties of pure (99.99%) indium and 6061-T6
aluminum alloy were determined. The dynamic properties of the composite were
calculated by using the values of the monolithic material in the composite
model proposed by L.G. Nielsen [4,5] and directly compared with the
experimental results.
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NIELSEN MODEL
The model developed by Nielsen [4] predicts the complex modulus of isotropic
two phase materials with arbitrary phase geometry. It is based on a continuum
mechanics composite sphere assemblage model but is semi-empirical. The model
assumes that the alloy is isotropic, strained only in the elastic range, and
is phase symmetric, that is both the matrix and second phase geometries are
identical at equal respective volume concentrations. Equations 1-4 below,
from Nielsen's model [5], calculate Young's modulus of the alloy, Ey, using

the Young's moduli of the matrix, E.', and second phase, Ei, and the volume

concentration, c. The volume concentration - V where Vi and Vs are
(V + V )

the volumes of the second phase and matrix respectively.
E,- eEy s  eq.l
where e is the relative Young's modulus of the alloy.

e-n + + 7c(n - eq.2

n + 7 - c(n 1)

where n is the relative stiffness and 7 is the shape function.

n- V eq.3

f - (p[l - c(l - n)] + p2[ - c - n)J o4 -])2 eq.4

and p is the shape factor which is dependent on the morphology of the
composite.

The complex modulus of the matrix, E', and second phase, E , is defined as
follows.

Es - as + ibs  and Ei - ai + ib' eq.5

where a and b are the storage and loss modulus respectively and the
superscripts s and i refer to the matrix and second phase respectively. The
conversion from Young's modulus equations to complex modulus equations is
accomplished with the use of the correspondence principle. The complex moduli
from equation 5 are substituted for the Young's moduli in equations 1 and 3
and the real and imaginary parts are separated. Starting with equation 3 we
have

n E ai + ib1 _ (ai + ib') (as - ibs) _ aia' + b'b s  i(aSb' - aib')
Es  as + ibs  (as + ibS)(a s - ibs) (as) 2 + (bS) 2  (as) 2 + (bS) 2

Let n- A + Bi where A - a'as + b'b s  B- a'b' - aibS
(a') 2 + (bS) 2  (aS) 2 + (bS) 2  eq.6

Now recalling equation 4

7- tp[l - c(l - n)] + jp2[ - c(l - n)+4n(l - )
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Upon substituting equation 6 the first part of equation 4 becomes

p[l - c(1 - n)] - p - pc + pcn - p - pc + pcA + pcBi eq.7

The second part of equation 4 is 4p2[l - c(1 - n)]2+4n(1 p)

[1 - c(l - n)]2  1- 2c(i - n) + c2( -n)
2

- 1 - 2c + 22n + c2 - 2c2n + c2n2

- 1 - 2c + c2 + (2c - 2c 2 )n + c2n2

since n2 - (A + iB)(A + iB) - A2 - B2 + 2ABi

then [1- c(l - n)]2 = (1 - 2c + c 2) + (2c - 2c2)A + C2(A2 - B2)
+ i[(2c - 2c2)B + 2c 2AB]

therfore .P 2[l c(l - n)]2+4n(l - p)

{p2[1 - 2c + c2 + (2c - 2c 2 )A + c2(A 2 - B2 )]

1

+ ip2 f (2c - 2c2)B + 2c2ABI + 4A(1 - p) + 14B(1 - p))2

- {p2[1 - 2c + c2 + 2c(1 - c)A + cZ(A 2 - B2 )]

1

+ 4A(I p) + i[p 2 2c(l - c)B + 2c 2ABp 2 + 4B(I - p)]-)2

i

Let 4p2(l - c(l - n)]2+4n(l - p) - [a + ip]2  eq.8

where a - p2 [(c - 1)2 - 2c(c - 1)A + c2(AZ - B2)] + 4A(1 - p) eq.9

and # - p22c(l - c)B + 2c2ABp2 + 4B(I - p) eq.10

In order to find the square root we change coordinates.

1
r - (a2 + p2) eq.11

0 - arctan (Nj-) eq.12

substituting equations 11 and 12 into equation 8 we have

4p2[l - c(l - n)] 2+4n(l - p) - r 1l 2 [cos(O/2)+isin(O/2)] - r 112 e i 0 12  eq.13

Combining equations 7 and 13 gives the complex shape function, 7".

!( l.p[1 - c(1 - A)] + pcBi + rl/2ef 2} eq.14
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Substituting the complex values of -y from equation 14 and the complex values
of n from equation 6 into equation 2 gives the complex relative modulus, e'.

e* n + -y* + *c(n - 1) _ n + j" + cnj* - Ic

n + j" - c(n - 1) n + j" - cn + c

A + Re(y*) cRe(-y*) + c[ARe(-y*) - BIm(-y*)]
(A + Re(y*) cA + c) + i(B + Im(v*) - cB)

+ i{B + Im(-y*) - cIm(-y*) + c[AIm(-y*) + BRe(y*)]} eq.15

(A + Re(7*) - cA + c) + i(B + Im(7*) - cB)

Let = A + Re(7*) cRe(-y*) + c[ARe(y*) - BIm(y*)] eq.16

and , = B + Im(7*) - cIm(-y*) + c[AIm(-y*) + BRe(y*)] eq.17

and substitute into equation 15.

e * -- 
+  ?7i

(A + Re(y*) - cA + c) + i(B + Im(7*) - cB)

( + i,)[(A + Re(-y*) - cA + c) - i(B + Im(y*) - cB)]

(A + Re(7*) - cA + c)2 +(B + Im(j*) - cB)2

_(A + Re(7*) - cA + c) + n(B + Im(7*) - cB)

(A + Re(y*) - cA - c)2 + (B + Im(j*) - cB)2

+ it7(A + Re(-f*) - cA + c) - (B + Im(j*) - cB) eq.18
(A + Re(-y*) cA - c) 2 + (B + Im(y*) - cB)2

Finally the complex modulus of the alloy is found by combining
equations 1, 5 and 18.

Ei  e*Es - Re(e*)as - Im(e*) + i(Im(e*) + Re(e*)b']

as [ (A + Re(-y*) cA + c) + n(B + Im(7*) - cB)]

(A + Re(j*) - cA - c)2 + (B + Im(j*) - cB)2

b'[,(A + Re(y*) - cA + c) - (B + Im(7*) - cB)J

(A + Re(7*) - cA - c) 2 + (B + Im(y*) - cB)2

+ i{as[q(A + Re(-y*) - cA + c) - (B + Im(y*) - cB)]

(A + Re(j*) - cA - C)2 + (B + Im(7*) cB)2

ba[(A + Re(y*) - cA + c) + q (B + Im(j*) - cB)] e

(A + Re(j*) - cA - c)2 + (B + Im(7*) - cB)e

Where the real of equation 19 is the storage modulus of the composite and the
imaginary part of equation 19 is the loss modulus.
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EXPERIMENTAL PROCEDURE
Aluminum 6061 alloys with additions of 0 to 12 weight percent indium were
prepared by plasma arc-melting. The starting alloys were pure indium (99.99%)
and 6061 alloy. The chemical composition of the alloys were determined by
wet-chemistry. The volume fraction of indium was calculated using the weight
fraction and density of each alloy by assuming complete immiscibility
between aluminum and indium. The arc-melted ingot was then reduced 60 to 80%
in thickness, by repeatedly cold-working 20 to 30% and annealing, to produce a
flat sample with a nominal thickness of 1.5 mm. The alloys were given a T6
temper consisting of solution treatment at 532 0C (990 OF) and aging 193
oC (380 OF) for 7 hours. Samples of pure indium were likewise plasma
arc-melted and rolled.
Each sample was characterized by metallographic and analytical electron
microscopy. Electron microscopy studies were performed at the University of
Michigan Electron Microbeam Analysis Laboratory. Thin foils for transmission
electron microscopy were prepared by twin jet electropolishing in a solution
of 20% nitric acid (by volume) and methanol.
The damping capacity and modulus of the samples were measured with a Polymer
Laboratories Dynamic Mechanical Thermal Analyzer (DMTA) located at the Naval
Research Laboratory. The DMTA uses a fixed-guided cantilever arrangement
where the left clamp holds the sample to a stationary frame while the right
clamp attaches the sample to the drive shaft. A small sinusoidal mechanical
stress is applied to a cantilevered sample and the resulting sinusoidal strain
is transduced. Comparison of the amplitude of the stress, a, and strain, e,
signals yields the storage modulus, a, and the phase lag of strain behind the
stress gives the phase angle, 6. The complex modulus, E, and loss modulus
b are calculated using the following equation:

a(l + itan 6) - E - a + ib eq.20

where tan 6 is the loss factor. The frequency of the vibrations was cycled
between .1, 1 and 10 Hz while the temperature was increased one degree C per
minute from 20 0C (68 OF) to 100 0C (212 OF). Each sample was measured at
least twice to check the consistency of the measurements.

RESULTS
The measured chemical composition and the calculated volume fraction of indium
are presented in table 1. The volume percent varied from 0 to 5.2. The
microstructures of the indium containing alloys are shown in Fig. 1. A
uniform dispersion of indium particles was found in all the samples with the
individual areas of indium increasing in size and number with the increase in
volume percent. The micrographs show the indium phase to be roughly
spherical. Examination of the age-hardened matrix using transmission electron
microscopy revealed that the age-hardening process was affected by the
addition of indium. A typical 6061 T6 microstructure consists of a uniform
distribution of Guinier-Preston zones (GPZ) and P' (rod shaped Mg2Si)

precipitates in the aluminum matrix as shown in Fig. 2a. The diffraction
conditions are optimized in Figs. 2a and 2b to show the 8'
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precipitates. The aged microstructures of the alloys, containing 1.4, 1.7,
and 5.2 volume percent indium are shown in Figs. 2b to 2d. It is apparent
that the aging kinetics have been affected by the additions of indium. The
general trend is that the precipitation of fi' is inhibited and the volume
fraction of second phase is reduced. Only the GPZ's are observed in the 1.7
and 5.2% alloys.
The results of the DMTA testing are shown as plots of loss modulus, (tan 6),
versus the storage modulus on logarithmic axis in order to eliminate
temperature and frequency measurement error from the data. As the temperature
was increased from 20 'C to 100 0C the loss factor increased as the
storage modulus decreased. The measurements of pure indium and the 6061 T6
alloy are shown in Fig. 3. For the temperature range tested, the storage
modulus of the 6061 T6 alloy did not vary significantly from 71 GPa while the
storage modulus of the indium varied from 2 GPa at room temperature to 0.9 GPa
at 100 CC. The loss factor of the 6061 T6 alloy was approximately 0.002
which is typical of precipitation hardened aluminum alloys. In contrast the
pure indium alloy exhibited high damping with the loss factor ranging from
0.06 to 0.2 at 100 0C. It was generally observed that the storage modulus
decreased and the loss factor increased with increasing addition of indium as
shown in Fig. 4. The storage modulus of the sample containing 5.2 volume
percent indium exhibited a more dramatic change than alloys containing less
than 3.2 volume percent indium, as illustrated in Fig. 4. The loss factor of
the 5.2 volume percent indium alloy at room temperature was measured to be
0.01. This was likely due to increased continuity of the indium phase.
The storage modulus and loss factor were calculated with the Nielsen model
using the data from the monolithic material in equations 19 and 20 and a shape
factor of one. A shape factor of one describes round second phase areas
completely surrounded by the matrix. The results of these calculations are
presented in Fig. 5. The calculated and measured values of the 0 volume
percent indium alloy are constrained to be equal. Comparing the calculated
values to the measured values as in Fig. 6 and 7 it is obvious that although
the calculated values show the same trends as the measured values, they
consistently overestimate both the measured storage modulus and the loss
factor of the alloys. For the alloys containing less than 3.2 volume percent
the storage modulus is only overestimated by 2% and the loss factor is
overestimated by 30%. However, in the case of the 5.2 volume percent indium
alloy the storage modulus was overestimated by more than 100% while the loss
factor was overestimated by 60%. These results may indicate a synergistic
effect such as the partitioning of alloying elements present in the 6061
material to the indium.

DISCUSSION
High damping aluminum alloys may be obtained by the addition of a viscoelastic
inclusion. In the present case a volume fraction of at least 0.05 is required
to produce an alloy with a loss factor greater than 0.01. However, there is a
significant loss of stiffness associated with the addition of the indium and
there appears to be a synergistic effect between the matrix and the inclusion.
The aged 6061-T6 microstructure shows a decreasing precipitate density with
increasing indium content and the measured loss factors are much less than the
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calculated values based on the damping capacities of the monolithic samples.
It is tempting to speculate that these observations are related. Indeed, the
solubility of magnesium in indium is greater than 30 atomic percent at the T6
aging temperature used in this experiment [6]. Thus the low volume fraction
of precipitates may be related to the partitioning of magnesium to the indium
inclusions. Furthermore, the indium-magnesium inclusions may have a lower
damping capacity than the pure indium. If indeed the damping of the indium
inclusion is a strain dependent mechanism, such as dislocation motion, the
addition of solute atoms will result in a lower loss factor for a comparable
cyclic strain.
The Nielsen model failed to predict the dynamic properties of indium
containing 6061-T6 alloys, but did provide a good first approximation. Future
modeling of this system will use the dynamic properties measured from
monolithic indium-magnesium alloys to compensate for the synergistic effects
encountered and the shape factor will be varied in an attempt to compensate
for non-spherical inclusions.

CONCLUSIONS
Additions of indium, a viscoelastic second phase particle, to 6061-T6
aluminum, a stiff matrix, have resulted in an increased damping capacity while
still maintaining most of the stiffness of the matrix. The measured and
calculated values agree that dampi~zA capacity increases and the storage
modulus decreases with increasing indium content. The Nielsen model is a good
first approximation for both the prediction of the maximum damping capacity
and stiffness of a particular alloy system and the tailoring of alloys to
obtain the damping capacity and stiffness required by a given application.
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0.00 1 0.00 0.77 0.048 0.71 0.26 0.23 98 97
0.78 1 2.08 0.74 0.047 0.83 0.27 0.25 95.78
1.43 1 3.77 0.70 0.046 0.76 0.26 0.24 94.22
1.67 4.37 0.67 0.045 0.73 0.25 0.22 93.72
2.16 5.63 0.70 0.044 0.75 0.26 0.22 92.40
2.66 6.87 0.73 0.045 0.71 0.25 0.21 91.19
3.20 8.20 0.73 0.041 0.70 0.28 0.22 89.83
5.16 112.80 0.70 0.042 0.64 0.23 0.20 85.39
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ABSTRACT

By pooling the resources of three laboratories, the damping in leaded brass and lead-free brass
has been explored over a wide range of variables, including frequency (0.03 Hz to 80 kHz), strain
amplitude (10 7 to 7 x 10-4), temperature (25 to 400"C), and vibrational modes (longitudinal and
flexure). For investigations at frequencies less than 50 Hz, cantilevered beams were tested, at
frequencies in the range 0.03 to 200 Hz, fixed guided beams (Dynamic Mechanical Thermal
Analyzer, DMTA) were used, while the high frequency (80 kHz) studies were performed with the
PUCOT (Piezoelectric Ultrasonic Composite Oscillator Technique). The results from the DMTA
experiments yielded an effective activation energy of about 1.67 eV/atom for the initiation of rapid
increases in damping §m a finction of temperature. This value is close to the value of 1.7 eV/atom
found by Youssef for the short-range ordering process of Zn and Cu atoms these type of alloys.
The PUCOT results for the leaded brass revealed a strong damping peak near 327"C, the melting
point of the lead inclusions. This peak is denoted as transient liquid phase (TLP) damping. The
amplitude dependence data on leaded brass showed that the break away effect, where the amplitude
independent damping changed to amplitude dependent damping, was temperature dependent, with
a maximum break away stress of over 2 MPa near 270"C. This temperature was close to the
280"C value observed by Youssef for short-range ordering of Cu-Zn alloys. The PUCOT data
agreed well with the earlier results of Wolfenden and Robinson on similar alloys. On the other
hand, no damping peaks near 327"C were found for the lead-free brass. The results of this study
conf'rmed that TLP damping is a mechanism that offers possibilities of enhancing the level of
damping in alloys containing low melting point inclusions. Taking into consideration the
thermoelastic (Zener) effects for flexural damping, the damping data from the three laboratories
were compared to see if consistent and reliable results could be obtained.
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INTRODUCTION

The search for materials with high stiffness and high intrinsic damping continues, driven by
the needs of the aerospace and space industries, and by developments within the US Department of
Defense. In this study, the intrinsic damping of materials is approached from a fundamental point
of view. There is no standard technique for the measurement of damping and, as a result, several
instruments that measure damping for different vibration modes over different ranges of
temperature, strain amplitude, and frequency have been developed. To assess the accuracy,
repeatability, and reliability of the experimental methods, specimens from the same stock have been
tested and the corresponding data compared. This research focussed on the following areas:
thermoelastic (Zener) damping, transient liquid phase (TLP) damping, dislocation break away
phenomena, and short-range ordering effects. The basic aim of the present research was to
measure and analyze the damping in brass as a function of temperature, frequency, strain
amplitude, lead content, and vibration mode.

MATERIALS

For this study, two types if brass alloys were used: 1) lead-free brass and 2) leaded (free-
machining) brass. The lead-free bar stock came in two compositions and thicknesses. Thick
samples (3.18 mm original thickness) had a composition by weight of 59.1% Cu, 38.1% Zn, and
less than 0.05% Pb. The thin bar stock (1.59 mm original thickness) had a composition of 68.8%
Cu, 29.0% Zn, and less than 0.05% Pb. The composition by weight of the leaded brass was
61.4% Cu, 35.4% Zn, with 2.65% Pb. Specimen sizes were tailored for the three instruments
used for the damping measurements.

INSTRUMENTATION

The three instruments used for the damping measurements were the Cantilevered Beam (CB),
the Dynamic Mechanical Thermal Analyzer (DMTA), and the Piezoelectric Ultrasonic Composite
Oscillator Technique (PUCOT). Details of these techniques have been reported elsewhere [1-5].
The typical sizes of the specimens used in the three instruments were 250 x 12 x 2.1 mm, 34 x 6 x
I m, and 50 x 2 x 1.6 m, respectively. The CB technique performed damping measurements in
the frequency range of 15 to 50 Hz, in a vacuum environment, and at room temperature. The
DMTA was used for measurements at frequencies in the range of 0.03 to 200 Hz, at temperatures
in the 25"C to 340"C range, and in an air environment. The PUCOT operated at 80 kHz, covering
the temperature range of 25"C to 400"C, with the specimens in an air environment. The strain
amplitudes for the three techniques were 5 x 10-5, 5 x 10-4 to 8 x 10-4 , and 10- 7 to 10-4 ,

respectively. The CB and DMTA instruments used the flexural vibration mode, while the PUCOT
used the longitudinal vibration mode.

RESULTS AND DISCUSSION

1. CB Technique

Figures 1-6 show the damping as a function of applied frequency for leaded and lead-free
brass. There are numerous definitions for damping in current use. For the CB technique, the
applicable definition is:

%F' = AW/W, (1)
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where AW is the energy dissipated during one cycle and W is the maximum stored energy.

Furthermore, the three definitions used in this interlaboratory work are related by:

T= AWIW = 2n tan 8 = 2n Q-1, (2)

with tan 8 (8 is the loss angle) measured by the DMTA and Q-1, the internal friction, measured by
the PUCOT. The continuous curves in Figs. 1-6 is the thermoelastic damping due to the Zener
effect [6,71 that is given by:

= (o / (1 + ca22), (3)

o= (2gca2ET) / (pCp), (4)

'= (h2pCp) / (t 2k), (5)

where To is a characteristic damping, x is a characteristic time of the problem, o) is the circular
frequency, a is the coefficient of thermal expansion, T is the absolute temperature, p is the mass
density, C, is the thermal capacity (at constant pressure) per unit mass, and k is the thermal
conductivity. These physical properties for the two types of brass used in this study are listed in
Table I. The total damping measured by the CB technique is thermoelastic damping plus the
intrinsic damping due to all other sources. Therefore, it is reassuring to note that the thermoelastic
damping serves as a lower bound for all measurements. The difference between the measured
values and the Zener curve is attributed to dislocation damping. In Figs. 5 and 6, the damping data
are plotted in accordance with the universal damping curve for brass (Eq. 3).

Table I - Physical properties of two types of brass at room temperature (21*C).

Lead-free Leaded

Coefficient of thermal expansion (K-1) 18.9 x 10-6 18.9 x 10-6

Young's Modulus (GPa) 103 103

Mass Density (g/cm 3) 8.44 8.49

Specific heat ( kg-1 K-1) 385 385

Thermal conductivity (W in -1 K-1 ) 144.1 144.1

2. DMTA Technique

Figures 7 and 8 show representative plots of damping (tanS) as a function of temperature for
lead-free and leaded brass, respectively, at several frequencies. Figure 7 indicates that the damping
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is low and essentially constant up to temperatures near 200"C, where the damping levels begin to
rise. The temperature at which the damping begins to rise, called the activation temperature,
increases as the frequency increases. Similar trends are observed in Fig. 8 for leaded brass. The
curve for the test at 200 Hz seems to give anomalous behavior which is believed to be due to
improper equipment functioning at this frequency. Using temperature estimates from Figs. 7 and
8, plus data from other DMTA tests on the same material, the frequency dependence of the
activation temperature (T.) for these alloys was examined. It should be noted that there was no
significant difference in activation temperatures between the leaded and lead-free brass. Figure 9
shows the plot of the natural logarithm of the frequency versus the reciprocal of the activation
temperature. The data are approximately linear, suggesting that the frequency and temperature can
be related by an equation of the form:

f = foexp(-H/RTa), or (6)

ln(f) = ln(fo) - (H/R)(l/Ta), (7)

where H is an effective activation energy for the increase in damping with temperature, R is the gas
constant, and fo is a constant parameter. The slope of the plot yields an effective activation energy
of 1.67 eV/atom or 38.3 kcal/mole. This value is close to the value of 1.7 eV/atom found by
Youssef [8] for the short-range ordering process in Cu-Zn alloys, being equal to the activation
energy for Zn diffusion in coarse-grained Cu. These results suggest that a diffusion damping
mechanism causes the rise in damping in the frequency range covered by the DMTA.

Figure 10 shows the damping as a function of frequency for the leaded brass at 30"C. The
data indicate the trend typical of thermoelastic damping with a peak between 3 and 10 Hz. This
result is similar to those from the CB experiments, but the strain amplitudes used were an order of
magnitude higher with the DMTA. Thus, one would expect there to be increased dislocation
damping in specimens tested in the DMTA. This is the case for the data from this study (note that
values for CB need to be divided be 2nr for direct comparison), as, for example, the peak value
from the DMTA is 2.5 times larger than the peak value from CB measurements. This difference is
greater than expected and indicates possible problems with the accuracy of the damping
measurements by the DMTA under the current testing procedures.

3. PUCOT

An Arrhenius plot of the damping data for leaded brass and lead-free brass is shown in Fig.
11. Clearly, there are significant differences in the damping curves for the two types of brass.
The lead-free brass shows smoothly increasing damping as temperature increases, with no sign of
damping peaks. On the other hand, the curves for the leaded brass show small peaks in damping
near 280"C and near 327"C. These results have been discussed earlier [4] in terms of the melting
of lead inclusions at and near the grain boundaries in the leaded brass. The strain amplitude
dependence of damping for leaded brass at several temperatures is given in Fig. 12. The curves
show the classical strain amplitude independent damping at low strains, and the amplitude
dependent damping at higher strains. This behavior, in terms of the Granato Lficke (GL)
dislocation damping theory [91, represents the break away of dislocations from their minor pinning
points, resulting in increases in damping. The break away stress needed to free dislocations from
their anchor points can be calculated from plots such as those in Fig. 12 by determining the break
away strain and converting it to a stress via the Young's modulus of the materials. Figure 13
shows a plot of the break away stress as a function of temperature for leaded brass with some
earlier data by Wolfenden and Robinson [4] on a similar material included. There is a pronounced
peak in stress at 270"C, which is near to the temperature of 280"C observed by Youssef [8] as the
short range order-disorder temperature in Cu-Zn alloys of similar composition to those used in this
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work. Thus, it appears that the details of the disordering process affect the ease with which

dislocations can break away from their pinning points under the application of a vibratory stress.

4. Comparison of Data

Figure 14 shows the damping data obtained from room temperature tests on the lead-free brass
and leaded brass. It is emphasized that the damping data from the CB have been corrected to
extract out the portion (=2/3) of the damping arising from thermoelastic (Zener) effects. For the
lead-free brass, the data from the CB and PUCOT techniques agree with each other to within a
factor of 1.3, while the results for leaded brass agree within a factor of two. These levels of
agreement are good, especially when considering the low damping levels present. The DMTA
results, not shown in Fig. 14, were considerably higher than those from the CB and PUCOT. It is
felt that DMTA technique has not been sufficiently optimized to provide accurate measurements of
the damping levels when the damping is low, as is the case for these alloys at room temperature.
However, the activation temperature results from the DMTA testing, where the ability to detect
changes in damping as a function of temperature, are promising and further optimization of the
technique is in progress.

SUMMARY

From this interlaboratory study of the damping in lead-free and leaded brass the following
summary statements and conclusions can be listed:

1. The measurements of damping over the wide range of experimental variables used in this
study require the use of more than one instrument.

2. A comparison of the damping data from the three instruments (CB, PUCOT, and DMTA) for
the two types of brass measured at room temperature revealed that the CB and PUCOT techniques
gave essentially identical measurements of damping (when allowances were made for thermoelastic
damping), whereas the DMTA measured higher damping, possibly due to a systematic error.

3. The results from the DMTA instrument yielded an effective activation energy of 1.67 eV/atom
for the rapid increase in damping as a function of temperature for temperatures below 300"C. This
activation was close to that found by Youssef for the short-range disordering process of Zn and Cu
atoms in similar alloys.

4. The PUCOT results for the leaded brass revealed a strong damping peak (TLP camping) near
327C, the melting point of lead.

5. The amplitude dependence study of damping with the PUCOT indicated that the break away
effect for dislocations was temperature dependent with a maximum break away stress of over 2
MPa near 270C. This temperature was close to that observed by Youssef for the short-range
ordering of Cu-Zn alloys.
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Fig. 9 - Arrhenius plot of the logarithm of the test frequency versus reciprocal temperature for lead-
free brass and leaded brass as measured by the DMTA. The data points correspond to the

activation temperatures where there was a rise in damping as shown in Figs. 7 and 8.
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Fig. 10 - Damping as a function of frequency for leaded brass at 30"C as measured by the DMTA.
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Fig. 11 - An Arrhenius plot of the mechanical damping of leaded (open data points) and lead-free
(filled data points) brass as measured by the PUCOT at 40 kHz and at a maximum strain amplitude

of 10-7 . (From [4].)

--

Q25

O--35

3x1a' 5 10 3 5

STRAIN AMPLITUDE E,,

Fig. 12 - Amplitude dependence of the mechanical damping of leaded brass at various temperatures
as measured by the PUCOT at 40 kHz. (From [41.)
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Abstract

A damping scheme combining the linear effects of a viscoelastic material and the non-
linear effects of an array of constraining plates was investigated. The damping material,
Poron, was applied to the surface of an aluminum beam and constrained by a layer of thin
aluminum segments. The segments were spaced so theat their edges would come into contact as
the beam deflected. At deflections smaller than those which cause segment contact, the linear
viscoelastic damping of the Poron was observed. At larger amplitudes, additional dissipation
was expected due to the impact of the segments. Several configurations of the beams were
tested in free fall in the ASTROVAC, a vacuum facility devoted to the testing of space
structures. Compared to theory, the results of the linearly damped beams showed good
correlation. The beams with contacting segments showed only a small amount of additional
dissipation

1. Introduction

There are many ways that damping can be added to a structure. The method that will
be discussed in this paper involves the use of a passive damping layer applied to the surface of
a structure. Unconstrained viscoelastic damping materials usually produce small increases in
linear damping. One way to increase damping is to add a layer of stiffer material to constrain
the viscoelastic layer (Ungar, 1966, Kerwin, 1959). The constraining layer causes the
viscoelastic material to shear, introducing additional energy loss. Because most of the shearing
occurs at the ends of a constrained viscoelastic layer, damping can be increased by segmenting
the constraining layer up so that there is more shear. In fact, the length of the constraints can
be optimized (Plunkett and Lee, 1970).

Further increases of damping might be achieved by exploiting non-linear effects. In
this project, an attempt was made to introduce non-linearities using the segmented constraint
layer of an existing damping scheme. A viscoelastic layer was applied to the surface of several
beams. This layer was then covered with a layer of constraining plates. The plates were
spaced so that when the beam vibration exceeded a certain amplitude, the constraints would
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impact. The objective was to give large, non-linear damping at high amplitudes and smaller

linear decay at low amplitudes.

2. Theoretical Background

The damping of a free viscoelastic layer applied to a beam in bending is due to losses
through the stretching and bending of the layer (see Fig. 2.1). The associated loss factor (equal
to twice the damping ratio for light damping) for a beam treated on one side is given by,

k (1+ 2)+ (rl/H1 2) [( + k) +(3 2k) 2

2 2 2

k[l + (r 2 /H12 ) [(1 + k) + (D 2k) ])

where,

02 =Loss factor of viscoelastic layer
k=E1H1 /E 2H2 =Ratio of extensional stiffnesses

rl=H1 / 12=Radius of gyration of the beam
r2 =H 2 /412=Radius of gyration of the viscoelastic layer
H12 =(Hl+H 2)/2=Distance between neutral planes of the two layers
Ei=Modulus of elasticity of the ith layer
Hi=Thickness of ith layer

assuming a loss-less beam (Ungar, 1966). This loss factor is clearly related to the material and
geometrical properties of the beam and viscoelastic layer. Adding this prediction to the
material damping of the beam, due for example to transverse thermal currents, gives a
prediction for the system dampih.g ratio.

ViscoelasticLayer H2

H121

Beam

Figurel
Structure with free viscoelastic layer

When a constraining layer is added, shear effects must be included in the model (see
Fig. 2.2). These effects depend on the curvature of the structure which can be seen in the
governing equation (Kerwin, 1959),
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3E t d y dx

= E 1tl 2y 2

1(j (2)

where T1 is the modified loss coefficient of a system, E3 is the modulus of elasticity of the

constraining layer, H 3 is the thickness of the layer, and W' is defined as the unmodified loss

coefficient of a constrained structure given by,

1'= 4 7wc sinh(A)sin(0/2)- sin (B)cos (0/2) 1
cosh(A)+cos(B) j (3)

where,
tan-10=02
A=w cosh/2)
B=w sin( 2 /2)
w=L1 /B 0
B0=(t2t3E3/G2 )1 /2

Gi=Shear modulus of viscoelastic material

ti=Thickness of ith layer

Equations 2 and 3 show the dependance of the damping on the shearing of the viscoelastic
layer, the bending of the base structure, and Lne length of the constraining layer.

Constraining Layer

t2 t3 L 1 L Viscoelastic

r-- Layer

/ ,
Structure

Figure 2
Segmented Constrained Beam
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The relationship between the damping and the length of the constraining layer can be
exploited to increase the loss factor. Most of the shearing of the viscoelastic layer occurs at the
edges of the constraining layer. This effect can be seen in Figure 3. As a result, the number and
length of the segments of the top layer can be optimized (Plunkett and Lee, 1970). One can
further increase the loss of energy of a structure by extending the concept of viscoelastic
damping by using multiple layers. There is another way to increase the damping however, by
introducing non-linear damping.

Given the structure of a constrained viscoelastic damping layer, there are several ways
one can introduce non-linear phenomena. One of these ways is to cause the segments of the
constraining layer to impact (see Fig. 2.3). The impact would effectively add another energy
dissipation mechanism. The only requirement is the careful spacing of the segments so they
will touch. One drawback of this scheme is the difficulty of modeling the phenomena of impact
damping.

Constraining Layer

Undeformed
Deformed

Figure 3

Non-linear damping mechanism

3 Experimental Apparatus

A set of experimental specimens was built to explore the possibility of added inpact
damping. Six test specimens were constructed, each a beam (27" x 1" x 1/8") of 6061-T6
aluminum. Each beam was modified with a different damping mechanism, allowing the effect
of each different layer to be observed separately. The first was a beam to determine the
material damping without any damping treatment. Then a beam with a 1/16" thick free layer
of Poron damping material on both faces was tested. An untreated area was left in the center for
strain gauges. A third beam with a "continuous" constraining layer of 1/32" sheet aluminum
was tested and compared to the unconstrained beam. In fact, the constraining layer was broken
in the middle so that there were two segments. The length of the constraint segments was very
close to the optimal length. Two beams tested were treated with segmented constraining layers
which consisted of 10 2.625" segments cn each side (see Fig. 4). One specimen had the segments
separated by a small gap set by using a feeler gauge. This gap (.002") was chosen so that the
segments would touch when the tip deflections of the free-free beam reached 1/2". The other
beam had a gap of .01" - enough to guarantee separation. Finally, a beam with the same size
segments bonded to the surface without a viscoelastic layer was tested. The segments were
spaced so that they would touch when the tip deflection exceeded 1/2".
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1/8" 1/32" _ ap Width

--- -- ---- ----- -----

2.625"

Figure 4
Test Specimen With Segmented Constrained Damping Layer

4. Experimental Procedure

Tests were performed in the ASTROVAC Space Simulation Facility at M.I.T. The
ASTROVAC consists of a vacuum chamber (14' tall, 10' diameter), launcher, data acquisition
system, and shaker system adapted for use in vacuum (see Fig. 5).

VIDEO CAMERA "

Figure 5
ASTROVAC Space Simulation Facility

Each test involved lofting a specimen in the ASTROVAC using the launcher (see Fig.

6). First, the specimen was set on the launch bed. Then the strain gauge wires were plugged into
the follower which kept the short, light, leak wires slack during the test. Next, the vacuum
chamber was evacuated to a pressure of 10-2 Torr and the beams were launched. While a beam
was vibrating in free fall, the data from the strain gauges was sent to a CAMAC Crate for
storage. Then the data was sent to an IBM XT for post-processing (Crawley, 1985).
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Figure 7Sample plot of strain (volts) vs. time (seconds)
The damping ratios for each of the specimens is shown in Table 1 for an average of 6launches. The beam with no damping layer showed the lowest damping while the beam withthe segments of optimal length showed the largest damping increase. Comparing the results ofthe segmented constrained layer with linear and non-linear spacing, there was only a slightincrease in damping. However, this increase was within the range of the scatter of the data.In addition, the damping ratio of the non-linear specimen showed little variation with

amplitude. Table 1 - Experimental Damping Results
Specimen Damping Ratio. 

Aluminum Beam .08
Free damping layer .10
2 segment constraining layer 3.99
10 segment constraining layer 1.97

.002' gap width
10 segment constraining layer 2.15

.01" gap width
10 segment bonded layer .46

The comparison of experimental vs. theoretical results showed good correlation withtheory (see Fig. 8). Damping ratio increase for the constrained segmented specimens,represented by CC and SCL ( two element constraining layer, and 10 element constraining layerrespectively) followed the pattern predicted by theory. The non-linear specimens representedby SCN and NNN ( constrained damping layer and bonded layer with non-linear spacing
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respectively) showed little damping increase compared to their linear counterparts. This
smaller than expected increase was probably due to several factors, the principle being
manufacturing problems which made it difficult to accurately control the gap between the
segments. Another possibility was that the plates did touch and the impact was too small to be
significant.

6'

0 5- Experimental 1
L• Theoretical

o~ 4-

cc. 3-

•2-
E

0Z 4

None Poron cc SCL NNN SCN

Figure 8
Experimental vs. theoretical damping ratios
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Abstract
Experimental methods to extract loss factors in constrain layer damped beams
are compared. Comparison of integral and additive damping treatments are
considered. Investigation of partial coverage treatment relation between appli-
cation length and effective damping ratio for isotropic beams is performed. Re-
suits indicate that optimum length exist for cantilever first mode, while the other
modes of investigation, clamped/clamped first " nd second and cantilever second,
show consistent increase in effective damping with increase in application length.
Integrally damped composite beams show significant increase in damping ratio
without reduction in bending stiffness. Log decrement appears to be the best
method for measuring damping values for cantilever first mode. Real and Im-
aginary components extract data that agree well with each other, while forming
an upper bound for the log decrement method.
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Introduction
Structural vibration is a recurring problem in such diverse fields from machinery
silencing in mining equipment to response attenuation in composite aerospace
structures. In current aerospace design, use of composite materials allows the
engineer to tailor a material to meet application requirements of mass and
stiffness. Vibrations, which cause cyclic loading of a structure, considerably re-
duce fatigue life thereby increasing failure rate. The use of viscoelastic materials
to attenuate response of structures through increasing the composite damping has
gained popularity in recent years. Discussions on the use of viscoelastics are
presented by Mar 1

The evaluation of one damping technique is often done through experimentation.
A comparison of several techniques will be presented. Evaluation of partial cov-
erage and integrally damped structures will also be pursued.

Passive damping seems the most effective technique for structures that have lim-
ited number of modes of concern. One major technique is Constrain Layer
Damping (CLD). This method involves sandwiching a viscoelastic medium be-
tween two stiff outer layers. The viscoelastic, a rubber-like compound, dissipates
energy via shear deformation. The two outer layers undergo the significant
bending and extensional loads while the central withstands the shear forces. The
incorporation of viscoelastic materials into existing structures (via CLD) has been
thoroughly investigated by numerous researchers 2-' 5 .

Viscoelastic damping is incorporated in one of two ways; 1.) additive damping
tape or 2.) integrally incorporated damping central layer. The additive damping
tapes have been used in an ad-hoc method to solve existing vibration problems.
Partial coverage with damping tapes allows the treatment to be applied in the
area and amount to effect the desired result for some applications. Integrally
damped structures are a relatively new phenomena. The damping layer is often
sandwiched between two symmetric constraining layers. Two sets of boundary
conditions, cantilever and clamped/clamped, are investigated for the partial cov-
erage treatment on an isotropic beam. The integrally damped beams are sub-
jected to cantilever investigation only.

The rationale behind investigating partial coverage treatments is twofold; first,
determine level of damping treatment will meet design criteria, and second, in-
vestigate possibility of an optimum length of treatment for a given mode and
structure. The driving force behind investigation of integrally damped beams is;
to determine effect of damping incorporated within design of beam and located
in center of symmetric beam. It is obvious that integrally damped beams involve
additional steps in manufacture and design. In the beams investigated here, the
two additional steps of; 1.) special lay-up with pre-cured graphite/epoxy com-
posite and 2.) pressure bonding of the damping material to the composite, were
required. Another design consideration in the incorporation of additive damping
is weight, compared with graphite epoxy the density is about equal, with the
damping tape on isotropic aluminum beam the density is also about the same (the
backing is the significant factor). Experimental method comparisons are neces-
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sary because it is not always feasible to run the best suited test. Citing this, it
must be known how test results correlate with actual values.

The principle objectives of this paper are to investigate different experimental
methods to extract damping values for beams with simple boundary conditions
and to evaluate partial coverage and integrally damped beams. This survey will
be useful to designers and analysts of advanced aerospace structures where fa-
tigue is a significant problem. The two boundary conditions considered are a
fixed/fixed (spar-like) beam and a cantilever member (similar to wings and other
rotary wing structures) (refer Figure l.a,.b). The research is conducted using ex-
perimental results which can later be compared with analytical and finite element
models.

Experimental Methods and Formulations
The two basic frameworks that most structural dynamics experimentation are
performed in are; I.) time domain and 2.) frequency domain. Frequency domain
techniques such as a Fast Fourier Transform (FFT) to develop a Frequency Re-
sponse Function (FRF) are often used. This function, FRF, then is used to ex-
tract modal information of natural frequency, modes shapes, damping and other
frequency dependent structural properties. This technique assumes linear
damping. The primary technique in the time domain is the Log Decrement Time
History (LDTH). This model does not assume linear damping but can not give
mode shape information readily.

Frequency Response Methods

Three basic FRF methods used in this investigation are; 1.) Real component of
the FRF (Re(FRF)), 2.) Imaginary component of the FRF (Im(FRF)), and 3.)
Circle Fit of Nyquist plot data. Looking at the imaginary part of the accelerance
FRF (ref Figure 2.a), for a single degree of freedom system (SDOF),

2CoIm(F2F -- -
Im(FR) = 1- ( n)2)2 + (2C _ )n )2 (.

where co, , co is the driving frequency and C is the damping ratio. It can
be shown that tre maximum response, or resonance, is near the natural frequency
(within 1-3 %) for moderate damping (C < .05), and has a magnitude of,

ITFIr! (2.)

where X, F, and m are the acceleration, magnitude of the driving force and ef-
fective mass. By looking at a point, b, near resonance a relation for relative
magnitudes can be developed;
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Im(FRF)b = . (3.)

(l Con )2)2 + (2C ')n Xr 2C~

Let

-5b =D R. (4.a,.b)

By incorporating equations 4.a and 4.b into equation 3. and restructuring the

result, it can be seen;
Il-D 21(5I - D (5 .)

2 D(I -D)
2 tR

Looking at the real part of the accelerance FRF (ref Figure 2.b), SDOF,

Re(FRF) = ( , (6.)(1-(Ct) )2)2 + (2( (On )2

where w,, w and C are defined as before. The point at which this function crosses
the zero axis is the natural frequency w,. It can also be shown that

where wc, and con. are the frequencies of maximum and minimum values of re-
sponse. While one will occur one each side of the crossing frequency, which will
have a higher frequency is dependent of the mode shape of response. From this
it is obvious that;

_omax__ _ __ _ (8.a,.b)
2 ' 2

Circle fit theory is of a much more complicated nature and can be referenced in
Ewins 16 and Luk and Mitchell"7 . Basically it involves constructing a plot of the
real versus imaginary components of the FRF into a Nyquist plot. It can then
be shown that the developed circle has a diameter inversely proportional to the
damping constant, C . This plot is only truly a circle for the mobility FRF for
viscous damping and the dynamic compliance FRF for structural damping. In
the case if light damping, less than 1 percent itiost models work well. Two other
frequently used methods are the magnitude of the total FRF and the phase angle
of the FRF (refer Figure 3.a,.b).
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Log Decrement Method

The log decrement method entails exciting a structure and measuring the decay
of the cyclic vibration when the exciter is removed. From the relative amplitude
of successive cycles of vibration and period of damped vibration, Td, the damped
natural frequency, (td, damping ratio, and natural frequency, co,, can be ex-
tracted. The log of relative amplitudes of successive cycles is called the log dec-
rement, 3 and is defined as;

6= ln x 1 In x (9.)xi+1  n Xi+(

where, x, xi,,, and x.,, are amplitude of response at those points in time. From
this, for light damping (C < .03), it can be shown;

_3 2ir
_- , cod =- 1 (lO.a,.b)

Through plotting, log decrement results, on semi-log paper one can determine
easily (often visually) if the damping is indeed linear or of another relation.

Experimental Results
Looking first at the results of the partial coverage experimentation, (refer Figure
4.a,.b and 5.a,.b), the structure tested here was a isotropic beam of Aluminum
606 1-T6 with damping treatment of ISD- 112 (from 3M), a viscoelastic material.
The physical dimensions were; for the base beam 9.00 (1) by .875 (w) by .125 (t),
the damping treatment was .875 (w) by .005 (t) for the viscoelastic and .010 (t)
for the aluminum backing material (all dimensions inches). The application
length, A, of the treatment was varied in 25 percent increments of total length,
L, (A/L = 0,25,50,75,100%).

The cantilever first mode shows good agreement between real and imaginary
FRF techniques. The log decrement graph reports lower damping values and an
earlier peak than the FRF methods. The circle fit data, though in a loosely re-
lated pattern, doesn't provide useful information about this mode. It appears
that the FRF methods bound the log decrement methods from above. Both show
a peak in the neighborhood of 50 % (A/L). This is in agreement with previous
authors work. The circle fit data discrepancy is due in part to the moderate
damping values, decision to use viscous damping model, and the use of
accelerance FRF.

The cantilever second mode shows good agreement between real, imaginary, and
circle fit methods up to 75 % (A/L). This graph also shows that there is a con-
tinual gain in damping with increasing application length.

The fixed/fixed first mode shows less than ten percent deviation for the entire test
between all methods used. It also shows that the damping ratio increases con-
sistently with increasing treatment in an almost linear fashion.
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The fixed/fixed second mode shows significant deviation in the methods This
difference reaches a maximum of 40 % at and application length of 50 % be-
tween the Re(FRF) and circle fit methods. The complement of the test has more
reasonable 20 % or less deviations. The main cause in this error is attributable
to the low resolution of this high frequency mode.

The time domain approach, as previously mentioned, compared well with the
frequency response methods for the cantilever first mode. For the integrally
damped beams the effects are not as readily apparent. The first beam was a 3-ply
graphite-epoxy laminate [90/0/90] (refer Figure 6.a). This beam was used as a
building block for the successive beams. By extracting the damping of this
structure, future beams could be thought of a three layer beams with this as one
of the layers. The second beam was constructed of two of these laminates sur-
rounding a 10 mil layer of polyproplene (refer Figure 6.b) . This increased the
bending moment of inertia thereby increasing the relative bending stiffness. The
next beam replaced the polyproplene with damping material (ISD- 112 from 3M)
of equal thickness (refer Figure 7.a). This was designed to increase damping
while not effecting stiffness significantly. The final beam was constructed two of
the laminates, similar to the third beam, subsisted of sandwiching a 10 mil thick
layer of polyproplene (refer Figure 7.b).

The first beam had a damping constant of 1.2%. The second beam reported a
value of .4% damping, this is in part due to the increased moment and the slight
stiffening the polyproplene gives the beam. The third beam reports a value of
11 % damping, demonstrating the significant effect integral damping can achieve.
Note also that the natural frequency did not change greatly, indicating that the
bending stiffness was not adversely effected. The last beam reports the same
value for damping as the third. The natural frequency of the forth beam is much
less than the third which may show that the central layers are not adding much
stiffness mainly weight. The plot of integrally damped beam response on semi-log
format shows a nearly linear relation, indicating close to linear damping, (refer
Figures 8.a,.b).

Conclusions
The partial treatment shows an optimum for the first mode cantilever in there
neighborhood of 50 % (A/L) application length. The second modes of
clamped/clamped and cantilever in addition to first mode clamped/clamped show
consistently increasing damping with increasing application length.

The incorporation of damping material in the central part of the structure ap-
pears to be the most efficient method to increase damping.

The frequency domain techniques of the Real and Imaginary components of the
FRF agree reasonably well with each other for the light damping investigated
here, but care must be taken to assure sufficient spectral resolution of test. They
also appear to be an upper bound for the log decrement method. The circle fit
data must be re-evaluated using a mobility FRF model.

KAB - 6



The log decrement tests show that damping is fairly linear for all the beams
tested. Also the test showed peaks in the expected region for the case of
cantilever first mode.
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DAMPING BEHAVIOUR OF FLEXIBLE LAMINATES

by
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Hertford SG13 8NL
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ABSTRACT

Formulae for the mechanics of flexing of laminates of a viscoelastic
material, such as an elastomer, and an inextensible material, such as
steel, have been derived and compared to experiment. In particular,
equations for the profile, stiffness and partition of energy between
elastomer and metal are given.

The effect of an axial load on the lateral stiffness of laminar struts
is investigated both theoretically and in experiments on free
oscillation. As the axial load approaches the buckling load, the
apparent damping level to lateral oscillations becomes very large.
Conversely for an axial tension the lateral stiffness is enhanced and
the damping to lateral oscillations is diminished. Other examples of
this phenomenon, which is not peculiar to the laminates, are given.
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1. INTRODUCTION

A characteristic of rubber springs is that they have relatively high
damping, and within limits the rubber compound can be chosen to give the
required level of damping. Each type of conventional rubber spring has
a characteristic force-deformation behaviour which may be convenient for
a particular application. In this work the properties of an
unconventional rubber spring will be described, which lends itself to
control of the damping level, and may have other advantages for some
applications. The spring consists of a sandwich structure of metal and
rubber (Figure 1). Attention will be concentrated on the flexing mode
of deformation (analogous to that of a leaf spring).

The mathematical expressions for the mechanical properties of the
laminate are relatively simple, so the properties can be readily
calculated. While this is a desirable state of affairs for an
engineering component, it also means that physical insight is not
obscured by mathematical complexity. For example, not only is the
effect of an axial load on the stability and apparent damping level (to
lateral oscillations) easy to investigate for the laminates, but the
effect also helps provide insight into a general phenomenon.

2. MECHANICS OF FLEXING OF RUBBER-STEEL LAMINATES

It is assumed that:

(i) there is no strain normal to the plane of flexure (so all forces
etc. will be taken per unit breadth of laminate)

(ii) the rubber is incompressible.

Thin, inextensible metal layers

Then, if the further assumption is made that the metal layers are
inextensible and much thinner than the rubber layers (t<<h), it follows
that the state of deformation of the rubber is simple shear and the
metal layers deform to have a common centre cf curvature. This is
demonstrated in Figure 2, from which it may be readily concluded that
the volume of the element PQRS is constant provided:

6v h68 (1)

which is the condition of inextensibility.

Since the element PQRS is not necessarily initially in a state of zero
shear, 6v may be identified with the increase in shear movement of one
metal layer relative to the other. Thus the angle of shear T is related
to the slope 8 of the laminate by:

d(tany)/d8 - 1 (2)
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Equation (2) may be integrated and for the case that the deflection y of
the laminate is small so that all the angles are small, simplified to
give:

tan y = 8 + constant = dy/dx + constant (3)

where the co-ordinates (x,y) are defined in Figure 2. Throughout the
rest of this paper the choice of co-ordinates allows the constant term
in (3) to be dropped, since it can in each case be seen that tani=O when
dy/dx=O. Only in relating 8 to dy/dx has the assumption of small angles
(and hence large radius of curvature of the laminate and small strain in
the rubber) been made, equations (1) and (2) being of more general
validity.

The shear in an element of rubber imposes an increment 6F in compressive
force per unit breadth on one metal layer and a corresponding increment
in tensile force on the other layer:

6F = G 6x.tany (4)

where G is the shear modulus of the rubber. Integration of equation
(4), using appropriate boundary conditions, yields the compressive (or
tensile) force F as a function of x.

The differential equation describing the profile of the flexed laminate
can be derived by consideration of the forces on an element, as depicted
in Figure 3. The total shear force S per unit breadth borne by the
laminate is distributed between the shear force SR borne by the rubber
layer and the shear forces S1 and S2 borne by the metal layers.

S = S 1 + S 2 + S R  (5)

Relatina SR to the shear in the rubber and SA and S2 to the curvature
gradient in the metal (S = -dM /dx, S - - M/dx where M. and M are
the bending moments in te metal layersi, equation f5) can be writtin as

S = Ghtany - d(M1 + M2 )/dx

= GhtanT - K(d 3y/dx 3 ) (6)

where it has been assumed that the radius of curvature is large compared
to the laminate thickness and K is given by

K - k1 + k2 - (EltI + E2t2 )/12(7)

where k k are the bending stiffnesses of the metal layers, E, E 2 are
their Yung s moduli and tI , t2 are their thicknesses (in the rest of
this paper E, = E, t W t2 so that the subscripts will be dropped).
Inserting (31 intg (61 gives

S - Gh(dy/dx) - K(d3y/dx3) (8)
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whi,A is applicable for the case that t<<h and the metal layers are
inextensible.

The local strain energy density in the rubber is just 0.5G(tany)2 so
that the total strain energy (per unit width) UR stored in the rubber is

UR = 0.5Ghf(dy/dx) 2dx (9)

where use has been made of equation (3).

The energy stored in the metal layers can similarly be calculated as

U M = O.5Kf(d 2y/dx 2 )2dx lO)

The total energy stored is P + UM

Geometric effect of thick metdl layers

If the metal layers have an appreciable thickness the assumption that
t<<h must be relaxed. However, to a small angle approximation
assumptions (i) and (ii) are satisfied if the deformation is such that
the central lines of the metal layers have a common centre of curvature.
The rubber is not then just deformed in simple shear but suffers some
compression and extension on the surfaces bonded to the metal in regions
of curvature. However, the effect is still an increment 6v to the shear
movement, given this time by:

6v - (h + (t1+t2 )/2)68 (11)

Thus equation (3) becomes:

tan - 2h+t1+t2 (dy/dx)

tan~ - 2h

A further modification required for thick metal layers is that the shear
stress in the laminate falls from Gtany in the rubber to zero across the
thickness of the metal layers, so that the shear term SR in equation (5)
becomes:

SR - GtanT(h + (t1+t2 )/2)

Thus equation (8) becomes:

(2h+t 1+t2 )2 dy d3 yS-=G -- -K-- (12)
4h dx dx3

Equation (12) has the same form as equation (8) but the geometric effect
of the thick metal layers enhances the magnitude of the shear term from
the rubber core. Hence in most of the work below the results are derived
from (8), but the results re valid for thicker metal layers provided Gh
is replaced by G(2h+tI+t 2 ) /4h.
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Effect of extension of the metal layers

Under the actions of the forces given by equation (4) the metal layers
will suffer some longitudinal extension. The neutral axes will no

longer coincide with the centre l1 nes, and equations (1) and (11) will
not be accurate. Mead and Markus have allowed for this effect by means
of an additional term involving the longitudinal extensions. This leads
to an additional differential equation to their analogue of equation (8)
or (12). Elimination of the longitudinal extensions from the pair of
differential equations yeilds a fifth order differential equation
analogous to (8) or (12).

This complication is not addressed in our work. As a consequence, the
limits as h+O (but G is kept fixed) correspond to metal layers which are
allowed to slip at the interface, instead of metal layers which are
bonded at the interface (which then becomes the common neutral axis).
Thus there is an implicit assumption that as h is reduced to zero, so G
is reduced to zero. A criterion for the validity of our equations is
derived below.

3. THREE-POINT BEND GEOMETRY

Profile

The three point bend geometry, shown in Figure 4, is a convenient
deformation for experimental measurement of the dynamic properties of
cne laminate on a servohydraulic test machine. It is necessary to treat
the laminate in two parts, O<x<% which covers the central region, and
-a<x<O which covers the overhanging region. It can be shown that in the
two extreme cases of G=O and of K=O that the overhanging region does not
influence the force-deflection behaviour, but it does have to be
considered in the general case.

The profile will be symmetrical about x=%, so it is only necessary to
solve the problem for x<%.

Considering first the portion of the laminate for O<x<, the bending
moment B exerted on a portion of laminate to the left of the point (x,y)
is given by

B = -Wx (13)

B is reiated to the shear force S in the beam by

S = -dB/dx (14)

inserting (14) into equation (8), and making use of (13) gives

W - Gh(dy/dx) - K(d 3y/dx 3 ) (15)

The differential equation describing the profile in the region -a<x<0 is
the same as (15) but with W set to zero.
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These differential equations are required to be solved subject to the
boundary conditions

(i) at x = -a, d 2y/dx2 = 0 since the bending moment in the metal here
must be zero as it is a free end

(ii) at x = 0, y = 0 while dy/dx and d 2y/dx2 must be the same for both
equations

(iii) at x = 2, dy/dx = 0 as required by symmetry.

The solutions are

ax -ax
for -a<x<0, y = A2 (e X-1) + 82(e- -1)

for O<x<k y = A1 (e x1) + BI(e -1) + Wx/Gh

where a2 = Gh/K
(Wah 5_-2rx 2  16

A1 =2(l+p 2q2)

A2 = A1 + (W/2aGh)

B1  P(Alp + W/aGh)

B2 = -A2/q2

p e , q=e

It has been reported previously 2 that equation (16) is in good agreement
with experimental observation of the profile. The deflection Y at x - %
can be found from (16) and this leads to an expression for the stiffness
of the laminate in the 3-point bend geometry:

(2W/Y)(9./2Gh) = 2a9,l +p'q2 ) (17)
2a%(l+p2q2)+(l-p)(3-q2-p+3pq2)

The quantity Z/2Gh represents the compliance in the limit of a% + u, and
is equal to that of a rubber spring undergoing simple shear. The
quantity at is a non-dimensional measure of the relative importance of
rubber and metal, and it is convenient to express all the results as
functions of at (as in equation (17)).
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Stored energy in 3-point bend

Inserting equation (16) into the integral expression (9) the energy
stored in the rubber is given by

Gh
URI overhang - - (dy/dx) dx

2 -a

.Gha (A 2 (11/q2)B 2 (q 2 )4aaA B (18)

Gh 2
UR2 central section - f-(dy/dx) dx

4

+ 2(W/Gh)2 I/a+(4W/aGh)(AIP+BI/P-AI-BI)) (19)

Since the energy loss associated with deforming rubber (per unit of
stored energy) greatly exceeds that of metals (for strains below the
yield point) the energy loss associated with deforming the laminate will
be proportional to U = U _UR. A plot of UR/(UR+Uu) versus a% is
given in Figure 5 wih vanes 1 Rf a/% as a parameter. IP is apparent that
that the overhang region (-a<x<o) only makes an appreciable difference
for values of at such that the total energy is fairly evenly partitioned
between rubber and metal. This effect is investigated further in Figure
6 where UO,/(U +UM) is plotted against a% with a/Z as a parameter. At
small vahies of 9£ the simple theory predicts a significant fraction of
the deformation energy to be stored in the rubber in the overhang
region. This is a manifestation of the effect of a constrained layer on
the damping of panels since it suggests that a constrained layer
covering a large region of a panel will have a useful damping effect on
a local deformation.

Forces in the metal layers

It follows from equations (4) and (11), and from the fact that the axial
force in the metal layer at x - -a is zero, that the compressive force
per unit width in the top metal layer is

2h+t1+t2
F= G 2h (Y-Ya) (20)

where Ya " y(x- -a).
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It is apparent from (20) that F rises to a maximum value of F-G(Y+Ya)
at x=k. If this maximum value is sufficiently large the metal layer can

buckle in a manner similar to an Eulerian strut, (although the

constraint of bonding to the rubber must be taken into account ). This

has the effect of limiting the permissible deflection Y.

The force in the bottom metal layer will, according to the boundary

condition, be equal and opposite to that in the top layer. A further

significance of these forces is that the resultant strain in the metal

layers may lead to a departure from the assumption of inextensibility

which was used to derive equation (i).

The condition of inextensibility of the metal layers may be expressed as

fe dx <<0.5 Vmax = 0.5(h+(t 1+t2 )/2)(dy/dx) max (21)

where the left hand side is the change in length of one metal layer due

to its axial strain and the right hand side is the shear displacement

predicted by equation (11) (reduced by a factor of one half since it is
'shared' between the metal layers). The axial strain e is just F/Et,

which using (20) gives

G (2h+t 1+t2 )£ b (Y-Ya) (22)
Et 2h a

For the extreme case of large a%, y=(x/%)Y (with y=O in the overhang) so

that (21) becomes

G/E << ht/Z 2  (23)

while for the extreme case that at is small, y-(W/2K)(k2x-x 3/3) (with

dy/dx constant in the overhang) so that (21) can be recast as

G/E<<ht/(ai2%a+592/6) (24)

For rubber G q. lMPa while fjr steel E - 210GPa, so the left hand side of

(23) or (24) is about 5x10--. This means that provided the length to

thickness ratio of the laminate is less than 100, a ratio of up to 100

between t and h is allowable. Thus for the system studied here

equations (8) or (12) have a very broad range of validity. They may

also be applicable to many cases of composite beams with a core layer of

viscoelastic material other than rubber.

4. LAMINAR STRUTS SUBJECTED TO AN AXIAL FORCE

Profile

Interconnecting the metal layers of the laminate depicted in Figure 7

leads to the following boundary conditions:

at x-0 y-0 (25)
at x-0,2 dy/dx-0
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where the second condition expresses the fact that the radius of
curvature of the metal layer is finite.

The total bending moment B applied by the laminate on the right hand
side of position x to the laminate on the left hand side is

B = M+W(Z-x) + P(Y-y) (26)

where Y is the deflection at y-Z.

Proceeding as for the three-point bend geometry then leads to

W = (Gh-P)dy/dx - K(d 3y/dx 3 ) (27)

Integrating the equation once gives

d2y/dx2 _ a2y = -Wx/K + C (28)

where a2 = (Gh-P)/K

Since a is imaginary for P>Gh it is convenient to express the solution
of (28) in hyperbolic functions rather than exponentials:

Wx C
y = Asinhax + Bcoshax - - + - (29)Ka a

Using the boundary conditions (25) to find values for the integration
constants A, B and C gives

y = W/Ka 3 [pcoshax - sinhax + ax - p] I

where a2 = (Gh-P)/K 1 (30)

p = tanh(at/2) I

Stiffness

The stiffness W/Y may be found from (30) by setting x-%. Algebraic
simplication then leads to

W Gh P aR ) (31)
Y t . 1 Gh ~a9-2p~

The quantity Gh/% has been isolated in equation (31) because it is the
value that W/Y takes for zero P and infinite a2, and is equivalent to a
rubber simple shear spring. A plot of (W/y)(Z/Gh) for P-0 versus aot
(where a -Gh/K) is given in Figure 8.

0
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The effect of P on the stiffness is of interest. When P>Gh, equation
(31) becomes

W= Gh -1 2. (32)

where 62 = (P-Gh)/K
q = tan(B2/2)

Using equation (31) when P<Gh and equation (32) when P>Gh, the
non-dimensional stiffness (W/Y)(%/Gh) can be plotted against the
non-dimensional normal load P/Gh. The results are given in Figure 9,
with a. as a parameter.

Stability

As B% + n, q+w so that, from equation (32), the stiffness falls to zero.
This is the point of instability, and the stability criterion may be
expressed as

=> P Gh(l+(r/ 0o)2) (33)p0

For Gh - 0, this reduces to the usual Eulerian buckling relation.

Elastic energy stored in the flexed laminate

Equation (30) may be used to evaluate dy/dx and hence UR# using equation
(9). This gives

UR - (GhW 2/2K 2 5 ) (3a./2 - 3p - p 2/2) (34)

Substituting for W2 using equation (31) gives

UR/Y2 = gh r 3L(/2-3p-p 2 /2)(- at2) 2 (35)
UR/ 22. % r2 a9P ,' a%2-2p~

In the case the P)Gh, 135) becomes

UR/Y2 .1(2h) L (3B%/2-3q+q212/2)( )2 (36)
R/ % 19,8-2q (6

The term 0.5(Gh/%) may be identified as the energy stored in a rubber
simple shear spring at unit deflectio2 (ie. the limit as a%+m). A plot
of the non-dimensional energy UR/(Y Gh/21) versus P/Gh is given in
Figure 10 with a 0 as a parameter. For P/Gh-l the profile will be
independent of a 2, thus explaining why all the plots in the Figure
coincide at that p8 int, since the energy in the rubber (U ) depends on
the profile. In all cases U exceeds the value for ru§ber in uniform
simple shear (GhY2/2A). This A because the profile departs from a
straight line configuration, for which the shear energy in the rubber is
a minimum, when K is non zero.
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It is also of interest to consider the ratio E of the energy stored in
the rubber to the work done by the lateral Force in deflecting the
strut:

E UR/o.sWY

A plot of versus P/Gh is given in Figure 11 with a £ as a parameter.
The magnitu e of E determines the degree of damping experienced by
lateral oscillations, as discussed below.

Forces in the metal layers

There are three contributions to the axial loading F in the metal - the
imposed axial load P, the imposed moment M and the contributions 6F from
the shear in the rubber (equation (4)). This makes the domain of
validity of the equations less broad than implied by equations (23) or
(24). However, the values of P and M applied in the experiments were so
modest as to not greatly affect the earlier conclusions regarding
validity.

5. EXPERIMENTAL

Experimen~a checks of some aspects of the theory have been reported
prevously ' and where appropriate these results have been entered as
points on the diagrams, thus allowing comparison with the theory.

Of particular interest here are the experimental measurements of the
fraction of energy stored in the rubber, U /(U R+UM) (Figure 5). The
dynamic behaviour of the laminates was measure§ using a servohydraulic
test machine. There were initial problems regarding the method of
support of the laminate in three point bend configuration, since the
metal layer tended to slide over the supports as the laminate was bent,
causing frictional energy loss. This was overcome by bonding to the
supports small resilient rubber pads which could deform very easily in
shear, but themselves dissipate very little energy. In this manner a
reliable measurement of the loss angle 6 of the laminate could be made.
The fraction of deformation energy of tie laminate stored in the rubber
can be found from 6 and an independent measurement of the loss angle 6r
of the rubber:

UR/(UR +UM)- sin 6 9,/sin 6 r (37)

where it has been assumed that the loss in the metal is negligible.

Further experimental work has now been undertaken to check the theory
for the effect of axial load on the stiffness and damping of struts
consisting of laminates with the metal layers interconnected at each
end. These laminates were constructed by bonding (during vulcanization)
nominal 0.25mm spring steel strips to each side of an unfilled natural
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rubber compound. The spring steel layers were separated at each end by
mild steel blocks, through which bolts passed which served as both a
means of attaching the struts and to prevent relative shear
displacements (at the ends of the strut) between the metal layers. The
shear modulus of the rubber was measured using a separate testpiece
(double shear) on a servohydraulic machine, giving a value of G =
0.52MPa. The logarithmic decrement of the rubber was determined from
free torsional oscillation of the double shear testpiece at 9.3Hz. This
gave a value of 0.0729, and there was very little frequency dependence.
The pertinent laminate dimensions were Z = 257mm (measured from the
inside edges of the mild steel end blocks), width of rubber = 44mm,
width of spring steel = 57mm, K = 0.74Nm (calculated from the measured
thickness of steel, 0.27mm, and adjusted according to the excess width
ef steel).

The axial load was applied by means of weights as depicted in Figure 12.
The stiffness W/Y and damping of the combined laminates were calculated
from the frequency f and logarithmic decrement A of the natural
oscillations of the structure according to

W/Y = M(2fff) 2  (38)

A = 9in(An/Am (39)
n-m

where A is the amplitude of the nth cycle. M is taken as the mass of
the weights plus that of half of the total (unladen) structure, since
the structure was symmetrical about the mid point of the laminates. For
tensile axial loads the structure was hung from the top board and
weights were placed on the lower board.

On the assumption that only the rubber is responsible for energy
dissipation, A may be related to UR by

A - Ttand(UR/O.5YW) (40)

since the fraction of energy lost on a full cycle (positive and negative
shear strains) is 2ftan6 for low to moderate values of the loss angle 6.

The results are compared to the predictions of the theory in Figures 13
and 14.

6. DISCUSSION

It has been shown here that provided a 0 is sufficiently large then most
of the de;ormation energy is stored in the rubber. It has been shown
elsewhere that provided a % is neither large nor too small the springs
can undergo larger deflectons than conventional metal leaf springs of
the same length, a compromise value of a % being around 10. It thus
appears that the laminated springs have u~eful characteristics and are,
in essence, rubber springs. The sole function of the metal layers is to
constrain the deformation of the rubber to be simple shear.
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An additional feature of the spring is that by using a multilayer
construction, rubbers of different levels of damping can be used
together in a parallel deformation. This may allow layers of very high
damping elastomer to be used, as analogues to oil-filled dampers, in
combination with a layer of highly elastic rubber. Elastomers with very
high damping are seldom used in conventional rubber springs because, on
their own, they generally suffer from unacceptably high creep. Most
conventional rubber springs do not lend themselves to parallel
deformation of two separate elastomers.

The effect of axial load on lateral stiffness, stability and damping of
the laminar struts is close to that predicted. Considering that there
are no fitting parameters available (all parameters having been
determined by independent experiments) the agreement may be taken as
satisfactory.

Figure 14 suggests that in fact the predicted load for instability is
slightly in error, which may be due, for example, to some uncertainty in
the rubber modulus. The deviation of the experimental results below the
theoretical values for tensile P may arise from imperfections in the
clamping at the ends of the struts, which might progresbively come to
resemble pin joints as the tension increases. This would act to reduce
the lateral stiffness towards P/Z. The theoretical result in Figure 14
can, in fact, be interpreted as the provision by the flexing stiffness
of the strut of an almost constant extra lateral stiffness, of magnitude
Gh/%, over and above the axial force term (for a pin-jointed rod) of
P/9.

As the axial load approaches the buckling load the apparent level of
damping to horizontal vibrations increases asymptotically. The
explanation of this phenomenon is that the apparent damping is
determined by the ratio of the energy dissipated in a lateral deflection
(of the given magnitude) to the energy required to achieve the
deflection. The dissipated energy depends primarily on the deflection
and is comparatively insensitive to the axial load (see Figure 10). In
particular, the dissipated energy remains finite at the buckling load.
However, the energy required to deflect the strut laterally falls
towards zero as instability is approached, so that the ratio rises
asympototically.

This phenomenon is quite general, and haggeen reported previously for
conventional laminated rubber bearings. Such bearings are used as
building mounts to achieve isolation from seismic accelerations.
Substantial damping is an essential requirement for base isolation
mounts, because some excitation of the natural frequency of the building
on the mounts invariably occurs. It appears that enhancement of damping
could usefully be contrived by designing the system such that some of
the bearings are loaded close to their point of instability. These
bearings will make little contribution to the lateral restoring force,
but will make a useful contribution to damping.
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The sensitivity of the lateral stiffness and the damping to the axial
load also has significance for the measurement of material properties.
For example, the apparent damping level of a taut strip of rubber
undergoing lateral vib 5ations is much lower than the true level of
damping of the material. This phenomenon is exploited to good effect in
stringed musical instruments, but may cause some test methods to give
misleading results for material properties (Thomas, work to be
published).
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Figure 7

Laminar strut geometry (note that the metal layers are interconnected at
the ends).
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non-dimensional parameter a% (equal to /Z7 ft
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Effect of axial load P on the lateral stiffness of laminar struts
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Effect of axial load P on the damping of lateral oscillations of laminar
struts
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Figure 12

Arrangement for measuring the effect of axial load on the lateral
stiffness and damping of laminar struts
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Experimental check of the effect of axial load (P) on the stiffness of
laminar struts
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DAMPED SIMPLE HARMONIC OSCILLATION
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ABSTRACT

Time histories of the impact damped simple harmonic oscillator in free
decay are studied. The numerical technique of finite differences with central
difference approximations is used to integrate the equations of motion. The
impact process is modeled during finite time by an equivalent linear spring
and viscous damper representing, respectively, material deformation and energy
loss during primary and secondary mass impact. This work corroborates, by an
independent method, the results of G.V. Brown and C.M. North' who used closed
form solutions and modeled impact, in infinitesimal time, by a restitution
model.
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DEFINITION OF SYMBOLS

ENGLISH SYMBOLS

A - Dimensional primary mass wall thickness.

C - Dimensional viscous damping coefficient.

Cc - Dimensional critical damping coefficient.

Cm - Dimensional equivalent primary mass damping coefficient.

d - Dimensional secondary mass width.

D - Dimensional cavity width.

e - Coefficient of restitution.

E - Dimensionless total system energy at any time t.

E0 - Dimensionless initial total system energy.

F(T) - Dimensional forcing function.

F0 - Dimensional forcing function amplitude constant.

f0 -Fo/Ke - Dimensionless forcing function amplitude constant.

K - Dimensional external elastic spring coefficient.

k -K/K - Dimensionless equivalent primary mass spring coefficient.

Km - Dimensional equivalent primary mass spring coefficient.

M - Dimensional primary mass.

m - Dimensional secondary mass.

T - Current dimensional time.

t -(nT - Current dimensionless time.

X - Dimensional primary mass displacement.

dX/dT - Dimensional primary mass velocity.

d2X/dT2 - Dimensional primary mass acceleration.

x - X/e - Dimensionless primary mass displacement.

x0 - Dimensionless primary mass initial displacement at t - 0.
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dx/dt - (dX/dT)/efl, - Dimensionless primary mass velocity.

d2x/dt2 - (d2X/dT2)/C(fqn) 2 - Dimensionless primary mass acceleration.

dxo/dt - Dimensionless primary mass initial velocity at time t - 0.

Y - Dimensional secondary mass relative displacement.

dY/dT - Dimensional secondary mass relative velocity.

d2Y/dT2 - Dimensional secondary mass relative acceleration.

y - Y/e - Dimensionless secondary mass relative displacement.

dy/dt - (dY/dT)/fln - Dimensionless secondary mass relative velocity.

dy'/dt - Dimensionless secondary mass relative velocity immediately following
impact in the restitution equation.

d2y/dt2 - (d2X/dT2 )/C(fn) 2 - Dimensionless secondary mass relative acceleration.

dyo/dt- Dimensionless secondary mass initial relative velocity at time t - 0.

Z - Dimensional secondary mass absolute displacement.

dZ/dT - Dimensional secondary mass absolute velocity.

d2Z/dT2 - Dimensional secondary mass absolute acceleration.

z - Z/e - Dimensionless secondary mass absolute displacement.

dz/dt - (dZ/dT)/ef1 - Dimensionless secondary mass absolute velocity.

d2z/dt2 
- (d2Z/dT2)/C(fl )2 - Dimensionless secondary mass absolute acceleration.
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GREEK SYMBOLS

6 - Logarithmic decrement.

- D - d - Dimensional maximum secondary mass undeformed cavity travel.

- Loss factor.

v - m/M - Mass ratio.

Of - Dimensional sinusoidal forcing function natural frequency.

- (Km/M)0 '5 - Dimensional primary mass material natural circular
frequency.

fOn - (K/M)0° 5 - Dimensional system natural circular frequency.

0, - [K/(M + m,]0 '5 - Dimensional stuck system natural circular frequency.

wf -f O/Oi - Dimensionless sinusoidal forcing function natural circular
frequency.

w. - - (k/v)0 5 - Dimensionless natural circular frequency or the
primary mass material.

wn -0n/ - 1 - Dimensionless harmonic oscillator natural circular
frequency.

s -fl " [I/(l+v)] 0 -5 - Dimensionless natural circular frequency of the

stuck primary and secondary masses.

-C/C - Damping ratio.

m "CM/C - Hysteretic damping ratio.

, -C/C - Dimensionless stuck damping ratio.
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1. INTRODUCTION

DESCRIPTION OF THE IMPACT DAMPER

The impact damper, known also as an acceleration damper or rattle damper,
is a passive type mechanical damper. It consists of an oscillator containing
a secondary mass which is able to travel freely between two stops either
mounted directly to the oscillator (primary mass) or between opposite walls
inside a hollow cavity within the primary mass.

The system is excited either by a forcing function or a nonzero set of
initial conditions (displacement and velocity). Vibratory motion of the
system causes the secondary mass to strike the stops or cavity walls of the
primary mass introducing energy dissipation in the form of elastic waves, heat
and noise.

Practical use of impact damping includes any application where its
simplicity and reliability are required. One example is space station
vibrations. Impact damping is unaffected by the cold vacuum of space and
would require little maintenance. A second possible application is in
turbomachinery. Implementation of impact damping in turbine blades and for
rotor torsional vibration would not require external structural modification.

HISTORICAL DEVELOPMENT OF IMPACT DAMPING

Publications as early as 1833 exist in the literature. The first
comprehensive analysis seems to have been reported in 1945 by P. Lieber and
D.P. Jensen (see P.J. Soller's2 chronology) using a forced plastic impact
model without external damping. Various studies were performed until S.F.
Masri in 1969 demonstrated both analytically and experimentally that two
equally spaced impacts per cycle did exist (see P.J. Soller2). After this,
analysis of the single degree of freedom system declined because coverage of
this system was thought to be adequate.

In 1982 C.M. North, while working as a Summer Faculty Fellow at NASA
Lewis Research Center, initiated the study of the transient motion of the
impact damped simple harmonic oscillator. In a later study he added Coulomb
friction between the primary and secondary masses. Under the direction of
C.M. North, S.E. Pyle 4 in 1983 modeled the transient motion of a simple
harmonic oscillator containing a viscous fluid as well as a secondary mass
inside the cavity. These studies showed that the energy removed from the
system by friction or by the presence of a viscous fluid was insignificant
compared to that removed by impact damping.

Under the direction of C.M. North, P.J. Soller 2 in 1985 did a transient
analysis of the externally forced and viscously damped harmonic oscillator
with a single impact damper. His work checked the results of previous studies
and reported the effect of mass ratio and coefficient of restitution on
amplitude of vibration and duration of transient response.

In 1987, G.V. Brown and C.M. North' reported the results of a transient
free decay time history solution of the impact damped simple harmonic
oscillator. Their work showed that all the important characteristics of
impact damping could be determined from a single transient free decay,
precluding the need of a long term forced motion study. They reported three
behavior ranges:
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1.) a low amplitude range with less than one
impact per cycle resulting in very low impact
damping;

2.) a useful middle amplitude range with a finite
number of impacts per cycle;

3.) a high amplitude range with an infinite number of
impacts per cycle and progressively decreasing
impact damping with increase in amplitude.

P 1. Torvik and W. Gibson3 , in 1987, parametrically investigated the
impact damper analytically and experimentally. Their work compared analytical
predictions to experimental results.

In 1988, under the direction of C.M. North, T.A. Nale5 reported the study
of the transient free decay motion of the impact damped cantilever beam. This
model explored the influence of cavity location, secondary mass travel, and
the higher modes on the effects of impact damping. The results revealed that
cavity location and secondary mass travel can be used to optimize the damper
effects on vibration amplitude. Of significance was the fact that the first
mode proved to be predominant in influencing the vibratory motion of the beam,
and consequently, higher modes are not required to produce an accurate
assessment of the effects of the impact damper.

OBJECTIVE OF THIS STUDY

The primary objective of this study is to evaluate the effectiveness of
the Component Element Method6 in modeling the transient free decay response of
the viscously damped, simple harmonic oscillator. The method models material
deformation during finite time of impact with the internal impact damper. The
evaluation is made by comparison of results obtained with the previous work of
G.V. Brown and C.M. North'.

COMPONENT ELEMENT METHOD DESCRIPTION

Springs, masses and dampers comprise an assemblage of elementary
components. The Component Element Method6 uses a finite difference
step-by-step process of integrating the equations of motion of the assemblage.
Because of this feature, system complexity is not limited by the ability to
find closed form solutions as it is when using purely analytical methods.

The method chosen here for approximating derivatives by finite
differences is the central difference approximation. As long as the time
interval chosen is kept within 2(ff)/wn, where wn is the highest natural
frequency (rad/sec) in the system, the solutions will be accurate and converge
to the exact solution (see Levy et al.6).

2. SYSTEM MATHEMATICAL MODEL

PHYSICAL SYSTEM

The modeled system is a simple harmonic oscillator with one internal
impact damper with optional viscous damping and an optional sinusoidal forcing
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forcing function. The sliding contact surfaces between the primary and
secondary masses are assumed to be frictionless. The configuration shown in
Fig. A is the dimensional representation of the system. The absolute
displacement of the primary mass M is X. The relative and absolute displace-
ments of the secondary mass m are Y and Z, respectively. The corresponding
external spring and viscous damping coefficients are K and C, respectively.
The sinusoidal force F(T) is a function of real time T. The primary mass
cavity wall thickness is A. The cavity width is D and d is the width of the
secondary mass.

The free decay motion in this study begins at dimensionless time zero.
The primary mass is released from rest with an initial dimensionless
displacement of 6.0. All other initial values of relative displacement and
velocity are 0.0. The primary mass equivalent material components, KM and CM
represent, respectively, the material deformation and structural damping of
the primary mass as it undergoes impact with the secondary mass (see L.
Meirovitch 7 and G.K. Hobbs8). Although the secondary mass also deforms and
registers energy loss due to hysteresis damping, these losses are lumped into
the equivalent spring and viscous damper shown schematically in Fig. A as a
part of the primary mass cavity wall.

/. Z

CM CM

KKM 
F(T)C dM

A-vile D , Al-

Figure A System Configuration in Free Motion

PRESENT MODEL DESCRIPTION

The model developed here uses the numerical method of finite difference
with central difference approximations to integrate, with respect to time, the
equations of motion of the primary and secondary masses.

Free motion is the condition where the two masses are experiencing
frictionless sliding contact, but without contact between the secondary mass
and the cavity wall of the primary mass.

The impact model at the cavity walls accounts for the deformation,
energy, displacement, velocity, and acceleration changes that occur during a
finite time of impact.

The elastic deformation of the primary mass during impact with the
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secondary mass is modeled by an equivalent linear spring whose material
elastic modulus is KM. Assumptions are:

1.) the material is linearly elastic;
2.) no permanent deformation occurs;
3.) the secondary mass is small compared to the primary

mass;
4.) the deformations of the primary mass cavity walls

due to impact with the secondary mass are small
compared to the secondary mass travel c within the
cavity.

Resultant hysteretic damping due to impact with the secondary mass is
modeled as an equivalent linear viscous damper whose damping coefficient is CM
and whose damping ratio, m, is determined iteratively by a subroutine
contained in a FORTRAN computer model. This subroutine models the deformation
and energy loss from a collision between the motionless primary mass and the
secondary mass by simulating the impact between a secondary mass m of unit
velocity and a spring damper pair like the one shown in Fig. B. The spring is
the equivalent linear spring whose elastic modulus is KM and the damper iz the
equivalent linear viscous damper whose damping coefficient is CM.

/ CM

Figure B Iterative Impact Model

The subroutine uses the knowm values of the dimensionless spring elastic
modulus, k, coefficient of restitution, e, and initial unit impact velocity of
the mass m. Closed form solutions are used to step through the impact process
beginning with a small assumed value of the structural damping ratio m" A
minimum of one hundred steps is used to assure accuracy of m within an error
of 10-8. At the conclusion of impact the secondary mass m has returned to the
impact starting position and its relative velocity is checked against the
relative velocity provided by the restitution model. If the velocities do not
agree within the error of 10-8, m is changed iteratively until the
restitution model is satisfied to within the required tolerance.

A phenomenon called "bounce-down" appears in a time study of a
sufficiently excited impact damped system. Bounce-down commences when the
secondary mass fails to acquire the velocity necessary to reach the opposite
cavity wall before colliding again with the previously impacted cavity wall.
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In free decay bounce-down will always terminate in the stuck regime
(definition to follow).

Bounce-down impact frequency rapidly increases while relative
displacement amplitude decreases. This motion continues until separation of
the two masses ceases to occur. Their motion, however, continues as minute
deformation induced oscillations without physical separation until hysteretic
damping dissipates the deformation induced oscillatory motion. This is
analogous to dropping a ball on a sidewalk and letting it bounce to a stop.

Bounce-down ends and the "stuck" condition begins when the secondary
mass relative velocity and relative acceleration become zero. The secondary
mass adheres to and moves with the primary mass until primary mass
acceleration changes sign reducing the normal reaction between the masses to
zero. At that point the secondary mass no longer adheres to the primary mass,
but is "slung" free, initiating a free motion regime.

In free decay when the primary mass dimensionless amplitude diminishes
from its initial value of 6.0 to an approximate value of 5.0, bounce-down and
the associated stuck condition cease to occur. Subsequently, the number of
impacts per half cycle decreases with decreasing dimensionless primary mass
peak amplitude until less than one impact per half cycle is recorded. This
point in the time history is called "Impact Failure" and designates the loss
of damping effectiveness of the impact damper.

DIMENSIONLESS EQUATIONS OF MOTION

To obtain results in a general form with the widest applicability the
equations of motion are made dimensionless as shown below. (See R.E. Jones

9

for the complete derivation.)
Time is made dimensionless with respect to the reciprocal of the primary

mass undamped natural circular frequency (which is the period of the undamped
primary mass motion). The circular frequency fin - (K/M)0"5. The corresponding
dimensionless time is

t - (T. (1)

Displacements are made dimensionless with respect to the secondary mass
free travel e - D - d within the cavity. The dimensionless displacements x,
y, z are: x - X/e, y - Y/c, z - Z/c. By letting wf - Llf/fln and f. - Fo/(KC)
the Sinusoidal forcing function can be written in the dimensionless form

F(T)/(Ke) - fosin(wft). (2)

FREE MOTION MODEL

Free motion is the resulting motion of the primary and secondary masses
when they are not impacting. The equations of free motion for the primary and
secondary masses are well known (see R.K. Vierckl0 , or S.S. Rao"). The
dimensionless equations of free motion for the primary and secondary masses
are,

d 2x/dt 2 + 2wj (dx/dt) + (Wn ) 2x - fosin(wft) (3)
d 2y/dt 2  

- d2 x/dt 2  (4)
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IMPACT MODEL

The primary mass experiences deformation of the cavity wall due to
secondary mass impact. The normal force between the two masses is non-zero.
The dimensionless equations of motion for impact at the left cavity wall are:

d2x/dt2 + 2wnj(dx/dt) + (Wn)2X -

v[2wj.m(dy/dt) + (WC)2y] + fosin(wft) (5)
d2y/dt 2 + 2wmj.(dy/dt) + (w.) 2y - -d2x/dt2  (6)

The dimensionless equations of motion for impact at the right cavity wall are:

d2x/dt2 + 2onj(dx/dt) + (Wn)2X -

v[ 2wjm.(dy/dt) + (Wo) 2 (y 1 1)] + fosin(wft) (7)

d2y/dt 2 + 2wjm(dy/dt) + (W.)2 (y 1) - d2x/dt2  (8)

STUCK MODEL

In the stuck regime the two masses are in contact but the normal force
between them is not zero. This condition results in the same equation of
motion when the secondary mass is stuck at either cavity wall. The equations
of motion for the stuck regime are:

d2x/dt2 + 2wsis(dx/dt) + (Ws) 2X - fosin(wft) (9)

d2y/dt2 - -d2x/dt2. (10)

SYSTEM ENERGY ANALYSIS

The total dimensionless energy of the system at any time is the sum of
the dimensionless kinetic and potential energy in the syzt :..

E - 0.5((dx/dt)2 + v[(dx/dt)2 + (dy/dt)2 ] + x2)

The ongoing percent of system energy at any time is determined by
dividing the current system energy by the initial system energy,

E0 - 0.5((dx0/dt) 2 + v[(dx0/dt)
2 + (dy0/dt)

2 ] + (x 0) 2 ).

3. ANALYSIS OF COMPUTER RESULTS

GENERAL COMMENTS

This work used the numerical technique of finite differences to integrate
the equations of motion (3) - (10) in a FORTRAN 77 computer program to
generate the transient time history of the viscously damped simple harmonic
oscillator with impact damping.

When the dimensionless primary mass displacement is greater than
approximately 5.0 (mass ratio v - 0.02, coefficient of restitution e - 0.6,
and viscous the damping ratio C - 0.0) the secondary mass experiences the
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bounce-down phenomenon that in free decay always terminates in the stuck
condition. The greater the dimensionless primary mass peak amplitude the
shorter the time duration that the secondary mass spends in the bounce-down
condition and the greater the time duration it is stuck to a cavity wall of
the primary mass. To prevent a lengthy stay in the bounce-down and stuck
conditions (which occurred in G.V. Brown and C.M. North' where the initial
dimensionless primary mass displacement was 10.0) the initial dimensionless
primary mass displacement was set here at 6.0. At the end of bounce-down and
the stuck regime, the number of impacts per half cycle that the secondary mass
experiences on one cavity wall before gaining sufficient relative velocity to
impact with the opposite cavity wall decreases with diminishing dimensionless
amplitude. This decline in number of impacts per half cycle continues until
impact failure ensues when less than one impact per half cycle occurs at an
approximate dimensionless amplitude between 0.1 and 0.05. The range of
greatest damping effectiveness for the impact damper lies between bounce-down
termination and impact failure. It is in this regime of primary mass
amplitude that the secondary mass acquires its greatest relative velocity due
to impacts on the advancing cavity wall. Structural damping is represented
here by an equivalent viscous damper. Therefore, damping is a function of the
relative velocity between the primary and secondary masscs. As the absolute
value of the dimensionless primary mass peak amplitude decreases,
dimensionless secondary mass relative velocity increases faster than the
dimensionless primary mass velocity decreases, resulting in an increase in the
relative velocity between the two masses. Thus the high relative velocity
between the two masses due to impacts on approaching cavity walls is
responsible for the high rate of impact damping effectiveness.

All the results discussed here were generated from the output files of a
computer program whose source code and executable file are stored on the
accompanying diskette of R.E. Jones9 . Figures 1 - 6 were made directly from
these computer output files where the mass ratio v - 0.02, the coefficient of
restitution e - 0.6 and viscous damping ratio - 0.0. All "Dimensionless
Amplitude" data plotted on the ordinate of Fig. 7 and the abscissas of Figures
8 - 14 were generated from the absolute values of the dimensionless peak
primary mass displacement at each half cycle of the primary mass motion. In
Fig. 15 the "Dimensionless Amplitude" is the peak primary mass dimensionless
amplitude that occurs during the half cycle in which an impact or impacts may
also occur. Therefore one value of dimensionless amplitude may apply to
several impacts. This is not to be confused with the dimensionless amplitude
of the primary mass at the time of the impact.

SYSTEM MOTION

The secondary mass experiences several types of motion from bounce-down
to impact failure. Three of these motion geometries (relative to the cavity
walls) are shown in Figures 1 - 3 which occur at approximate primary mass
dimensionless amplitudes of 5.6, 2.6, 0.6, respectively. Fig. 1 illustrates
the bounce-down condition followed by the stuck regime. Later on, after
bounce-down ceases, the secondary mass in Fig. 2 is impacting a cavity wall
three times before gaining sufficient relative velocity to cross the cavity
travel width to the opposite cavity wall. Even later in the time history, in
Fig. 3, the secondary mass impacts a cavity wall twice before alternating with
a single impact on the opposite cavity wall.
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In Figures 4 - 6 the approximate primary mass dimensionless amplitudes
are 0.4, 0.2, 0.05, respectively. The dimensionless secondary mass absolute
displacement is represented by a dashed line and the absolute displacement of
the two cavity walls is represented by two solid lines. Two unequally spaced
impacts per cycle are shown in Fig 4. Later in the free decay, two equally
spaced impacts per cycle are shown in Fig. 5. Fig. 6 clearly exhibits the
point where the impact damper loses its effectiveness when impact failure
begins.

LOSS FACTOR

The loss factor is a measure of damping effectiveness, where the greater
the loss factor, the more effective the damper is at reducing the primary mass
vibratory motion. The loss factor is defined as the change in primary mass
energy that occurs between the two extreme absolute dimensionless primary mass
displacement peaks of a cycle divided by the primary mass energy at the
absolute dimensionless primary mass half cycle peak that lies midway between
the two full cycle peaks; i.e., the loss factor is

n AE/E,

where E is the total system energy. When the simple harmonic oscillator is at
a peak amplitude, the kinetic energy vanishes and the total energy is:

E - kx2/2

Since AE - kxAx then the loss factor per cycle is:

- 2Ax/x

AVERAGED LOSS FACTOR

To generate the "Averaged Loss Factor" each point of the data shown in
Figures 8 - 14 is the result of a least squares parabolic fit applied to the
absolute values of primary mass peak amplitudes for ten successive half cycles
(eleven data points). These data are used to determine the averaged loss
factor. This smoothing or averaging is necessary because of the variations in
peak amplitudes. Some data required the application of the least squares fit
to as many as 18 half cycles in order to present the data in acceptably smooth
form. The averaging process has the effect of broadening and reducing the
loss factor peaks.

In Figures 8 - 15 the primary mass dimensionless displacement amplitudes
are decreasing as the free decay time history progresses.

AMPLITUDE DECAY

Fig. 7 displays the decay curves of the absolute value of the
dimensionless peak half cycle amplitudes versus the time of the amplitude
occurrence. For this figure the external damping ratio ( - 0.0, and mass
ratio is v - 1, 2, 4 percent, while all other parameters are held constant.
The efficiency of impact damping for a given set of parameters corresponds to
the slope of the curve. Clearly illustrated is the increase in loss factor
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with decrease in amplitude until impact failure commences at a dimensionless
amplitude of between approximately 0.05 - 0.1. Impact failure is easily
recognized here by the curve tails close to the horizontal axis. The
bounce-down and stuck regime is in the dimensionless primary mass amplitude
range above approximately 5.0.

EFFECTS OF THE MASS RATIO

In Fig. 8 the coefficient of restitution, e - 0.6, external damping ratio
- 0.0, and three values of mass ratio, v - 1, 2, 4 percent are used to

demonstrate the increase in loss factor with a decrease in amplitude.
Comparing Fig. 8 with Figures 4 and 5 indicates that maximum damping
efficiency due to impact damping occurs when the secondary mass experiences
one impact per half cycle. The similarity between the curves depicted in
Fig. 8 suggests a factor may exist, when applied to each curve, that would
cause the three to converge on one common curve. The curves in Fig. 8 are
reduced nearly to a single curve as shown in Fig. 9 by dividing the averaged
loss factor by the mass ratio (also called the "Specific Total Loss Factor").
The specific total loss factor is a constant at any given amplitude for mass
ratios up to 4 percent. This demonstrates that the loss factor and the
dissipated energy due to impact (Fig. 8) are approximately proportional to the
mass ratio.

EFFECTS OF VISCOUS DAMPING

Fig. 10, with a single value of the coefficient of restitution e - 0.6
and mass ratio of v - 2 percent, compares the loss factors resulting from
viscous damping ratios of 0.0, 0.2, 0.4, 0.8 percent.

The "Specific Secondary Mass Loss Factor" is obtained when the damping
contribution made by twice the viscous damping ratio 2 is subtracted from the
averaged loss factor in Fig. 10, and the result is divided by the mass ratio.
This contribution of viscous damping 2 is obtained from the logarithmic
decrement, 6, which is a measure of the rate of decay between any two
successive cycles (for detailed derivation, see R.E. Jonesg).

The simple additive nature of viscous and impact damping is illustrated
in Fig. 11. The nearly identical overlapping curves show that viscous damping
on the primary mass and impact damping are additive for very small viscous
damping ratios. This near coincidence of the curves provides a single curve
that closely describes the specific secondary mass losz factor as a function
of dimensionless amplitude. However, this curve is unique for the value of
the coefficient of restitution e - 0.6. Different curves can be generated for
other values of the coefficient of restitution. Over most of the length of
the curve, the specific secondary mass loss factor increases as the
dimensionless amplitude decreases.

Fig. 12 illustrates to what extent the apparent approximate
correspondence between amplitude and the specific secondary mass loss factor
exists in Fig. 11. To show this the specific secondary mass loss factor from
Fig. 11 is multiplied by the dimensionless amplitude. The resulting
overlapping of the curves justify the correspondence. In the dimensionless
amplitude range from 0.1 - 6.0 the curve has variations within ±31 percent of
the average ordinate value 0.339. The approximate constant value of the
ordinate provides an easy estimate of impact damping over a wide amplitude
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range.

EFFECTS OF THE COEFFICIENT OF RESTITUTION

The general effect of changing the coefficient of restitution e is shown
in Fig. 13. The dimensionless amplitude multiplied by the specific secondary
mass loss factor is represented for values of e - 0.4, 0.6, 0.8 and mass ratio
v - 2 percent, and viscous damping ratio - 0.0. The lower value of e = 0.4
results in incrcased loss factor in the middle dimensionless amplitude range
of 0.1 to bounce-down termination. Bounce-down ends at approximately 2.0 and
5.0 for coefficients of restitution e - 0.4 and 0.6, respectively. For
coefficient of restitution e - 0.8 bounce-down ends at an amplitude beyond
the scope of this study (greater than 6.0). For coefficients of restitution
values of e - 0.4, 0.6, 0.8, impact failure begins at approximately 0.15, 0.1
and 0.01, respectively. To summarize, for lower values of the coefficient of
restitution, e, bounce-down ends at lower dimensionless amplitudes and impact
failure begins at higher values of the dimensionless amplitude. Higher values
of the coefficient of restitution e have just the opposite effect.

Fig. 14 is obtained from Fig. 13 by dividing the ordinate values in Fig.
13 by (1 - e). The merging of the curves demonstrates that within impact
damping active range (implied by Fig. 13), the damping is approximately
proportional to (1 - e).

IMPACT PHASE ANGLE

Fig. 15 is a phase plot (without viscous damping) of the secondary mass
impacts that occur during a half cycle where the dimensionless primary mass
amplitude is the absolute value of the dimensionless primary mass peak
amplitude in a half cycle. The coefficient of restitution e - 0.6 and the
mass ratio v - 0.02. The phase angle in degrees is determined from the
secondary mass cavity wall impact point between primary mass crossings of the
zero dimensionless displacement axis. A half cycle of 180 degrees is defined
between the dimensionless primary mass displacement amplitude zero crossings.
The secondary mass impact phase in degrees is defined by the point in time at
which the impact of the secondary mass occurs during the dimensionless primary
mass displacement half cycle. This point is established when the
dimensionless secondary mass relative displacement is zero (impact at the left
cavity wall) or one (impact with the right cavity wall). The relationship is

Time from last zero crossing to impact
Phase - X 1800.

Time between zero crossings

The initial time for the data shown in Fig. 15 corresponds to the initial
dimensionless amplitude of 6.0 and the time history progresses as amplitude
decreases. Impact points are shown in the figure as small squares. The
darkened area in the upper right corner of the figure represents the stuck
regime where the secondary mass moves in temporary contact with the primary
mass until the dimensionless primary mass acceleration changes sign. The area
beneath the stuck region all the way down to the horizontal axis is the realm
of bounce-down. Notice that in the bounce-down region the impact phase (at a
given dimensionless amplitude) increases as the stuck regime is approached
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vertically from the horizontal axis until bounce-down terminates in the stuck
regime. At an approximate dimensionless amplitude of 5.0 bounce-down and the
stuck regime cease. At that point, as the dimensionless amplitude diminishes,
the number of impacts per half cycle also diminishes. Note that at
progressively decreasing amplitudes of approximately 4.4, 4.0, 3.3, 2.5, 1.3,
0.2 in Fig. 15, clear patterns of six, five, four, three, two, and one impacts
per half cycle, respectively, are indicated. The plot clearly shows that
regular impact regions per half cycle alternate with regions of chaotic
impact. Comparing Fig. 15 with the slopes of the curves in Fig. 7, impact
damping is seen to be most efficient (for coefficient of restitution e = 0.6
and mass ratio v = 0.02) in the region of single impacts per half cycle.
This corresponds to a dimensionless amplitude range from approximately 0.2 to
impact failure, which ensues at approximate dimensionless amplitudes of 0.05
0.1.

4. COMPARISON OF RESULTS TO THOSE OF G.V. BROWN AND C.M. NORTH'

SIMILARITIES AND DIFFERENCES

In comparing these results with those of the previous work of G.V. Brown
and C.M. North', the observable differences can be attributed to:

1. the inherent difference between the two models;
2. initial conditions;
3. a variation in the least squares method used for

loss factor averaging.

Although all the results compare well, close scrutiny shows a very small
difference in data point to data point comparison. During one comparative run
of identical parameters the dimensionless time required for reducing vibratory
motion from initial primary mass displacement to impact failure was
approximately 5 - 10 percent less here than in G.V. Brown and C.M. North'.
However, more study should be performed to verify this observation. Also the
chaotic regions appear to be less chaotic in Fig. 15 than in G.V. Brown and
C.M. North'.

G.V. Brown and C.M. North' began the free decay time history at a
dimensionless primary mass displacement amplitude of 10.0. The present study
initiated free decay with a dimensionless primary mass displacement amplitude
of 6.0. The larger of these two amplitudes causes the primary and secondary
masses to remain in the bounce-down and stuck regime for a longer length of
time for all of the results presented. As a consequence, their time histories
will always require longer dimensionless times to reach impact failure since
more time was spent in the bounce-down and stuck regimes where small damping
occurs.

In each of the loss factor curves (Figures 8 - 12) a maximum value peak
in the region of impact failure is lower and broader here than in G.V. Brown
and C.M. North'. The peak in question is located at a dimensionless amplitude
of approximately 0.1 in Figures 8 - 12. In Figures 13 and 14 the peak
corresponding to each of the three curves in each figure occurs at dimen-
sionless amplitude of approximately 0.08, 0.1, 0.12. G.V. Brown and C.M.
North' used a variation of the loss factor averaging scheme in the vicinity of
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this peak causing the difference in appearance of the curve in the two works.
It is noted however, that the region of impact failure appears to contain
little meaningful information.

SUMMARY

The overall results given here are qualitatively identical to G.V. Brown
and C.M. North'. This similarity of results from the two studies supports the
assumptions of G.V. Brown and C.M. North' while lending credibility to the
model in the present work. The present work uses finite differences with
central difference approximations to integrate the equations of motion. The
actual impact process is modeled using discrete time intervals during impact
between the primary and secondary mass. The deformation and energy losses of
the impacting masses are assumed to be equivalent to a linear spring and
viscous damper, respectively, for the small deformations involved. G.V. Brown
and C.M. North' used closed form solutions and initiated free decay with a
dimensionless primary mass initial displacement of 10.0. The coefficient of
restitution was used to model across impact by assuming the time duration of
impact to be infinitesimally small compared to the time required for the
secondary mass to travel between impacts. The differences between these basic
models accounts for all of the deviations between the results obtained from
the two studies.

5. CONCLUSIONS

The accuracy of the numerical method is dependent directly on the size of
the time step used. The smaller the time step, the more accurate the
results. The spring and damper components used are all assumed to be linear
and subject to linear restrictions (e.g., small deformations). The
equivalent linear damper used to simulate structural damping is viscous and it
is therefore velocity dependent. Structural damping is typically nonlinear
and dependent upon the magnitude of deformation. For small secondary mass to
primary mass ratios, the justification for using the more convenient viscous
damping for a structural damping model comes from assuming small structural
deformations resulting from impacts between the primary and secondary masses.

The component element method with its utilization of the numerical finite
difference technique is shown to be a useful analysis tool for investigating
the impact damped simple harmonic oscillator in freely decaying motion. The
impact process is modeled as if the deformation and energy losses from the
impacting primary and secondary masses were replaced by an equivalent linear
spring and viscous damper. The results obtained have been shown to compare
favorably, for small mass ratios, to G.V. Brown and C.M. North' who used
closed form solutions to model the motion and a restitution model across
impact. The accuracy of the results make the component element method worth
consideration for future investigations of more complex systems of multiple
components and impact dampers where closed form solutions may prove difficult
or impossible to obtain. Although not utilized here, the component element
method has the flexibility of incorporating nonlinear expressions or even data
bases to represent component moduli.

The present computer model confirmed the following results obtained
earlier by G.V. Brown and C.M. North1 :
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(1) A low amplitude and corresponding low effective impact
damping range occurs for impact damping for coefficients of
restitution e - 0.4, 0.6, 0.8. Impact failure is dominant
for the diminishing dimensionless amplitudes starting at
0.15, 0.1, 0.01, respectively, where less than one impact
per half cycle occurs.

(2) Between bounce-down and the stuck regime to the beginning of
impact failure a middle dimensionless amplitude range of
useful impact damping exists. The number of impacts per
half cycle in this range depends on the dimensionless
primary mass amplitude (i.e., the greater the amplitude the
more impacts per half cycle).

(3) In the bounce-down and stuck regime impact damping is
decreasingly effective. Dimensionless primary mass
amplitudes are above approximately 2.0 and 5.0 for
coefficients of restitutions e - 0.4, 0.6 respectively. The
number of impacts per half cycle is large and can increase
without bound as the coefficient of restitution approaches
one.

For additional light viscous damping the impact damping in the middle
dimensionless amplitude range from the bounce-down and stuck regime to impact
failure is shown to be:

(1) represented by one curve for a given coefficient of
restitution implying that impact damping is proportional
to the mass ratio;

(2) additive to proportional viscous damping;
(3) a unique function of vibration amplitude where the loss

factor increases as the dimensionless primary mass amplitude
decreases;

(4) proportional to (1 - e), where e is the coefficient of
restitution.

For a coefficient of restitution e - 0.6 and mass ratio v - 0.02 impact
damping is most effective when the dimensionless amplitude is about 10 percent
of the secondary mass cavity travel (dimensionless value of one). The loss
factor has a maximum value of nearly 0.1 and over a wide range of
dimensionless amplitudes the loss factor is 0.01. Impact damping is a strong
function of amplitude and produces substantial damping for small mass ratios.
Because of this, several impact dampers may be combined with different
secondary mass travel gaps to provide damping over wide ranges of amplitude.
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Figure 8 Averaged Total Loss Factor as a Function of Amplitude for Three
Values of the Impactor Mass Ratio. e - 0.6; v - 1, 2, 4 percent.
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SPECIFIC LOSS FACTOR vs. AMPLITUDE
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Figure 9 Specific Total Loss Factor as a Function of Amplitude for Three
Values of the Impactor Mass Ratio e - 0.6; y - 1, 2, 4 percent.
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Figure 10 Averaged Total Loss Factor as a Function of Amplitude for Four
Values of Viscous Damping Ratios. v - 0.02; e - 0.6;

- 0.0, 0.2, 0.4, 0.8 percent.
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Figure 11 Specific Secondary Mass Loss Factor as a Function of Amplitude for
Four Values of Viscous Damping Ratios. v - 0.02; e - 0.6;

= 0.0, 0.2, 0.4, 0.8 percent.
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Figure 12 Amplitude Multiplied by the Specific Secondary Mass Loss Factor as
a Function of Amplitude for Four Values of Viscous Damping Ratios.
v - 0.02; e - 0.6; [ - 0.0, 0.2, 0.4, 0.8 percent.
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Figure 13 Amplitude Multiplied by Specific Secondary Mass Loss Factor for
Three Values of the Coefficient of Restitution.
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Figure 14 Amplitude Multiplied by the Specific Secondary Mass Loss Factor
Divided by (1 - e) for Three Values of the Coefficient of
Restitution. v - 0.02; e - 0.4, 0.6, 0.8
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TIME HISTORY STUDY OF A CLASSICAL CANTILEVER BEAM
DAMPED BY INTERNAL MECHANICAL MEANS

C. M. North
Rose-Hulman Institute of Technology

Terre Haute, Indiana USA

and

T. A. Nale
General Motors Corporation
Allison Gas Turbine Division
Indianapolis, Indiana USA

ABSTRACT

The impact damped classical elastic cantilever beam in free decay is
studied in its many states of vibration by means of time history studies. The
effective damping is correlated with the impact mass behavior. The three
major behavior regimes studied are: (1) a high amplitude range with an
infinite number of impacts per half cycle resulting in decreased damping
effectiveness, (2) a moderate amplitude range with a highly useful finite
number of impacts per half cycle resulting in the most effective damping, and
(3) a low amplitude range with less than one impact per half cycle yielding
very low damping. The relative effects on energy dissipation produced in the
beam by variations in the number of natural modes used during calculation,
impactor/beam mass ratio, and impactor/beam coefficient of restitution are
studied. These parametric studies have shown that the impactor reduces the
amplitude of beam vibration in the same fashion regardless of the number of
natural modes used during calculation. Furthermore it is shown that the most
effective damping occurs when the dimensionless amplitude of transverse beam
vibration at the longitudinal cavity coordinate is less than 1.0 independent
of all other parameters.
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NOMENCIATURE

A Beam Height
B Beam Width
C Cavity Depth
D Impactor Height
e Coefficient of Restitution
E Linear Spring Potential Energy
AE Change in Linear Spring Potential Energy
EI Beam Flexural Rigidity
Ex  Cavity Width
ETotal Cavity Length
ex  Ex/L - Dimensionless Cavity Width
Fo  Magnitude of Sine Input
fo Fo/pV2 - Dimensionless Magnitude of Sine Input
F(X) Initial Beam Displacement
f(x) F(X)/L - Dimensionless Initial Beam Displacement
G(X) Initial Beam Velocity
g(x) G(X)/L - Dimensionless Initial Beam Velocity
H ..- D - Cavity Length (Gap)
h HL - Dimensionless Cavity Length (Gap)
L Beam Length
M Impactor Mass
m Dimensionless Impactor to Beam Mass Ratio
Pi Magnitude of Impulse During Impact at T - Ti

Pi Pi/pLV - Dimensionless Impulse During Impact
T Real Time
Tc Beam Characteristic Wave Time
t T/Tc - Dimensionless Time
n t Dimensionless Time of Impact with Cavity Wall
ni Average Period of Oscillation Across Five Cycles
U(T) Relative Displacement of Impactor
u(t) U(T)/H - Dimensionless Impactor Relative Displacement
W(T) Y(Xo+O.5Ex,T) - Cavity Deflection
w(t) W(T)/L - Dimensionless Cavity Deflection
X Beam Longitudinal Coordinate
x X/L - Dimensionless Beam Longitudinal Coordinate
Xf Longitudinal Coordinate of Sine Force Xf - Xo+(0.5)Ex
Xf Xf/L - Dimensionless Location of Sine Force
Xo  Longitudinal Coordinate of Cavity Left Wall 0 < Xo < Xo+Ex < L
xo  Xo/L - Dimensionless Location of Cavity
y Linear Spring Deflection
Ay Change in Linear Spring Deflection
Y(X,T) Transverse Beam Deflection (Neutral Axis)
y(x,t) Y(X,T)/L - Dimensionless Transverse Beam Deflection
I(T) Heaviside Unit Step Function
6(T) Dirac Impulse Function
1Loss Factor for One Half Cycle
p Beam Mass per unit Length

Phase angle at Impact ti
O Angular Frequency of Sine Input
Wf OTC - Dimensionless Angular Frequency of Sine Input
10k Beam Natural Modal Frequencies
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INTRODUCTION

Impact damping dissipates vibrational energy by internal mechanical
means. The primary model of the mechanism by which energy is removed from the
system is the coefficient of restitution. A simple but effective illustration
of how the coefficient of restitution is used to model energy loss during
impact is a bouncing ball in a uniform gravitational field. During the
bouncing process the maximum height reached during each successive ycle is
smaller than that of the previous cycle. For this to be true the energy of
the ball, which is the sum of the kinetic and potential energies at any point
in time, has decreased by some finite amount. This decrease in the total
energy is a function of the decrease in the ball's maximum height between two
successive cycles. For the case of a ball bouncing on a hard floor in a
constant gravitational field in the absence of air resistance the "coefficient
of restitution is simply the square root of the ratio of the maximum height
after impact to the maximum height before impact"1 . It can be easily shown
that the ball's rebound height becomes successively smaller while approaching
zero. Although the ball will theoretically go through an infinite number of
bounces, this occurs in a finite period of time. For practical purposes the
ball is said to be resting on the floor at the end of this finite time. This
phenomenon is referred to herein as "bounce-down". It will be shown later
that the damping effectiveness of an impact damped system depends heavily upon
the amplitude of oscillation at the cavity.

The history of impact damping can be traced to 1833 in published
literature. Although this subject has a long history it a~pears that the
majority of recently published work has been done by Masri , Bapat and

3Popplewell . Past work done in the area of impact damping has concentrated on
the analysis of steady-state forced oscillators. In doing this the authors
have assumed a steady-state solution, generally two impacts per half cycle.
These assumed solutions limit the impactor analysis to a narrow range of
cavity amplitudes. The use of these limited solutions does give the reader an
indication of the effectiveness of impact dampers but is inadequate for
determining the optimum damper effectiveness.

In 1982, under sponsorship of NASA Lewis Research Center, Brown and
North4 initiated the study of the transient response of the simple harmonic
oscillator with a single internal impact damper. These studies began with the
development of an analytical and a digital computer model of an undamped,
freely vibrating simple harmonic oscillator having a single cavity containing
a single frictionless impact damper. A second model that was developed by
North (unpublished) included the effects of Coulomb friction between the
impactor and the primary mass. In 1986 the authors began to develop a digital
model of the free and forced vibration of a classical elastic cantilever beam
damped by a single internal frictionless impact damper. The results obtained
from the beam model are the subject of this document.

The study of a continuous beam subject to impact damping in free decay
may appear to be unimportant compared to the study of impact damping of the
forced beam. This is not necessarily so. Analysis of the transient free
decay of the impact damped beam provides a great deal of valuable information
which can be applied to the forced vibrating beam with impact damping.

First, there exist several characteristics of transient free decay which
also apply to forced response. It is later shown that impact damping is
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frequency independent. This leads to the conclusion that impact damping
effectiveness is independent of a forcing function's frequency. Impact
damping is found to be most heavily dependent upon the amplitude of vibration
experienced by the beam cavity. Free decay initial cavity amplitudes are used
to span a wide range of forcing functions magnitudes. This allows free decay
analysis to be applied to forced motion response of various transient and
steady state cavity amplitudes.

Secondly, the simplicity of free motion makes it more advantageous to
study than forced motion response. The absence of large transient conditions
during free decay make it possible to observe the several impactor behavioral
characteristics within shorter time intervals than would be required for
transient forced motion. Free decay characterizes impact damping across a
wide range of beam cavity vibrational amplitudes using a single time-history
profile with appropriately chosen initial conditions. The patterned behavior
which characterizes impactor motion is more easily discerned with the use of
free decay time histories. The presence of a forcing function can eliminate a
significant portion of the impactor's patterned spectrum.

Finally, the study of transient free decay can be made to simulate the
recovery from the occurrence of a transient disturbance to a steady state
beam4 . All of these reasons make the use of transient free decay time-history
studies useful.

The application of impact damping would provide a means of significantly
decreasing the amplitude of vibration without altering the external
configuration of the system. The use of impact dampers also could reduce the
fatigue effects of vibration experienced by aerospace parts. This would allow
the stringency of design criteria for such parts to be relaxed. The reduced
effects of fatigue would allow lighter weight parts with a longer working
lifetime to be produced.

This study was initiated to determine the characteristics and
effectiveness of impact damping applied to a continuous elastic cantilever
beam. The overall motivating factor for these studies is a desire to
investigate the concept of adding very light damping to aerospace systems
which exhibit self-excited vibration or forced vibration near a natural
frequency. This research was performed with the following objectives in hand:

1.) Compare the effects of impact damping applied to continuous elastic
cantilever beams with that of simple harmonic oscillators. Determine the
similarities and differences in the behavior of the two applications.

2.) Determine the effects of higher modal frequencies on the characteristic
behavior of the impactor and the ability of impact damping to effectively
reduce continuous elastic cantilever beam vibration amplitude.

3.) Evaluate the ability of impact dampers to inhibit vibration. This
decrease in vibration amplitude is quantified by means of loss factor
evaluation.

4.) Determine impactor behavior and damping effectiveness as the cavity
vibrational amplitude decays.
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5.) Measure the change in effective damping with respect to variations in the
impactor/beam mass ratio.

6.) Evaluate the effects of the coefficient of restitution on the
characteristic behavior and damping effectiveness of the impactor.

IMPACTOR BEHAVIOR AND DECAY STUDY

A FORTRAN digital model of the impact damped classical elastic cantilever
beam, Figures 1 and 2, was developed for the purpose of performing parametric
studies of beam impactor performance. The longitudinal position of the beam
cavity, xo, is set at 0.684 units. This cavity location was determined by use
of beam mode shape displacement analysis. This cavity position is used to
maximize the vibrational activity of the beam at the location of the
impactor5 . During this study the initial conditions of the beam were such
that the first mode was excited with an initial generalized displacement of
0.05 and no initial generalized velocity. The magnitude of the resulting
initial dimensionless displacement of the cavity was 6.0 units. The effects
of varying the initial conditions are not explored in this study. Mass ratios
of 1.0, 2.0, and 3.0 percent and coefficients of restitution of 0.5, 0.6, 0.7,
and 0.8 were used to generate the time histories. The geometrical
configuration of the beam is kept unchanged for the time history studies
discussed in this report. The magnitudes of the dimensionless physical beam
dimensions were determined by a comparative analysis with the data used by
Brown and North4 . A cavity width, ex, of 0.04 units and a cavity length, h,
of 0.01 units are used, Figures 1 and 2. The beam is unforced with no initial
relative displacement or relative velocity of the impactor. Another parameter
that is varied in this study is the number of mode shapes used during
computation. Time histories were made with 1, 2, 5, and 10 mode shapes for
the varying mass ratios with a constant coefficient of restitution of 0.6.
From this comparative analysis it was found that the higher modal frequencies
are of little significance when determining the damping effectiveness of the
impactor.

The impactor relative displacement and absolute displacement curves
presented in the Appendix, Figures 3 thru 7, show how the impactor behaves as
the cavity amplitude of vibration decays. Note that in Figures 6 and 7 the
solid lines represent the top and bottom cavity walls with the dashed line
representing the impactor. At first, during high amplitude motion, Figure 3,
the impactor experiences an infinite number of impacts per half cycle. This
occurs because the cavity wall is moving in the same direction as the impactor
with a velocity of greater magnitude than that of the impactor. This type of
impactor behavior is referred to as bounce-down and is followed immediately by
stuck impactor failure. During bounce-down and stuck impactor failure the
impactor exhibits a low level of damping effectiveness. This type of high
cavity amplitude impactor behavior ceases at moderate amplitudes and is
immediately followed by a range during which a finite number of impacts per
half cycle occur. This can be observed in two predominate patterns, the first
being an equal number of impacts on each side of the cavity for successive
half cycles with the second type of motion being an alternating pattern of
even to odd numbers of impacts on opposite cavity walls for successive half
cycles. The effectiveness of impact damping steadily increases during this
behavior to a maximum damping effectiveness when one impact per half cycle is
the pattern of motion, Figures 5 and 6. The damping effectiveness of this
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motion is attributed to the fact that the impactor is striking an advancing
cavity wall resulting in the most effective reduction of beam velocity
experienced as a result of impact damping. When one impact per half cycle is
occurring impact damper failure soon follows. When the cyclic motion of the
impactor degenerates to occasional random impacts along the cavity wall with
less than one impact per half cycle for successive periods, Figure 7, impact
damping is no longer effective. Once this occurs the damping of the impactor
quickly diminishes.

The presence of higher modes does not alter the basic types of behavior
the impactor experiences. However, higher modal frequencies do cause the
presence of bounce-down and stuck impactor failure to be less predominate at
high amplitudes. As a result the impactor experiences a finite number of
impacts per half cycle over a wider cavity amplitude range.

The amplitude decay for the impact damped classical elastic cantilever
beam is a simple and quick indicator of the damping occurring as a result of
the impactor. The amplitude decay is determined by plotting the amplitude of
beam cavity vibration for each half cycle versus the corresponding
dimensiolless time at which the amplitude occurs (see Figures 8 thru 10).

The effects of the higher mode shapes on the amplitude decay curves are
minimal. It is demonstrated in Figure 8 that the amplitude decay for 1, 2, 5,
and 10 modes all follow the same general trend with a small increase in the
range of time during which low damping effectiveness occurs. This extension
of the upper portion of the curve results in the effective regime of behavior
to be shifted to a later period in time. Another effect of the higher modes
is to cause impact failure to occur at a slightly higher amplitude. Although
the point at which impact failure occurs is very important when designing an
impact damped system, the higher mode shapes do not significantly change the
results from those observed in the single mode case.

The amplitude decay curves for mass ratios of 1, 2, and 3 percent are
presented collectively in Figure 9. From this figure the observation can be
made that increasing the mass ratio decreases the period of time during which
damping of low effectiveness occurs.

The amplitude decay curves for varying values of the coefficient of
restitution ranging from 0.5 to 0.8 are shown in Figure 10. From this graph
it can be seen that lower values of the coefficient of restitution reduce the
time required for equivalent damping. It can also be seen that the decrease
in the time required for equivalent damping is not linearly related to the
decrease in the coefficient of restitution. As the coefficient of restitution
becomes smaller (less than 0.6) the decrease in the time required for
equivalent damping becomes significantly less.

LOSS FACTOR RESULTS

The loss factor is defined as the change in beam energy with respect to
initial beam energy over a cycle of beam vibration. It can be shown that the
loss factor is simply a function of the change in beam cavity amplitude over a
cycle of beam vibration with respect to the initial amplitude of the cycle.
Applying this fact the calculation of the loss factor was performed using a
least squares parabolic fit. This fit is performed to smooth the loss factor
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curve and calculate an averaged loss factor, which will be referred to as the
loss factor (see Appendix B). The loss factor is plotted with reference to
the cavity amplitude. By observing the amplitude decay curve, Figure 8, one
would expect the loss factor to increase as the amplitude decreases to the
point of impact damper failure. Figure 12 does indeed show this to be the
case with impact failure occurring in an amplitude range of 0.3 to 0.07. From
this figure it is also observed that the most effective damping which the beam
experiences occurs in a cavity amplitude range less than unity. From phase
plot Figure 17 whose construction is detailed later, it is illustrated that
chaotic and one impact per half cycle behavior of the impactor occurs at
amplitudes less than and equal to unity while two impacts per half cycle are
experienced by the impactor at an amplitude slightly greater than unity. From
this it is concluded that the most effective damping correlates to impactor
behavior beginning at the transition from two to one impacts per half cycle.

As previously discussed the influence of higher modes does not play a
major factor in changing the behavior of the impact damped classical elastic
cantilever beam. This fact is again illustrated by observing the loss factor
curves for 1, 2, 5, and 10 modes with all other variables held constant.
Figure 11 shows that the presence of higher mode frequencies does not
significantly alter the loss factor curve with respect to the cavity
amplitude. The presence of higher modal frequencies does tend to band the
loss factor about those results obtained for the single mode case. The center
of this band width occurs about the first mode. It is therefore concluded
that the effects of other parameters on the loss factor can be based upon a
first mode comparative analysis.

The impactor to beam mass ratio plays a significant role in determining
the value of the loss factor for any given cavity amplitude. More
specifically, as seen in Figure 12, increasing the mass ratio results in an
increase in the loss factor for all amplitudes prior to impact failure. It is
also observed that this increase is a constant value change which can be
directly expressed as a function of the reciprocal of the mass ratio. To
illustrate this fact the loss factor is divided by the mass ratio to obtain
the specific total loss factor. Figure 13 shows that the specific total loss
factor reduces all mass dependent loss factors to one common curve as a
function of cavity amplitude. The specific total loss factor begins with a
magnitude of 0.09 at a cavity amplitude of 6.0 while undergoing stuck impactor
behavior and reaches a peak value of 9.0 prior to impact damper failure. From
the Mass Normalized Loss Factor plot, Figure 13, it is observed that the
specific total loss factor behaves as a linear function of the cavity
amplitude with a slope of approximately negative one. To show the extent to
which this is true the product of the specific total loss factor and cavity
amplitude is illustrated in Figure 14. When observing this result it can be
inferred that this product behaves on the average as a constant of magnitude
approximately 0.4 for all cavity amplitudes. This constant value
interpretation is valid within an error range of ±25 percent prior to impact
damper failure. A significant point of interest is that the simple harmonic
oscillator was found to behave in a very similar manner with reference to the
loss factor's dependence upon the mass ratio and cavity amplitude .

A third parameter which plays a major role in the evaluation of impact
damper performance is the coefficient of restitution denoted by e. It is
observed that any increase in the coefficient of restitution results in a
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decrease in the effectiveness of the impact damper. Another conclusion that
can be made is that this decrease in the loss factor is not linearly related
to the coefficient of restitution. To effectively amplify changes in the loss
factor curve for varying values of the coefficient of restitution the product
of the specific total loss factor and cavity amplitude is used to generate the
Amplitude Specific Loss Factor curve, Figure 15. From these results it can be
more clearly observed that the loss factor is not linearly related to the

coefficient of restitution f r all cavity amplitudes. Applying a relationship
developed by Brown and North the quotient of the amplitude specific loss
factor and (l-e) results in Figure 16. This result is valid only within the
range of motion for which a finite number of impacts occurs during each half
cycle. As with the amplitude specific loss factor this curve can be
reasonably approximated as a constant of value 1.0 to within an error of +30
percent. This illustrates that the loss factor for the classical elastic
cantilever beam and simple harmonic oscillator investigated by Brown and
North4 behave in a similar manner with regard to variations in the coefficient
of restitution.

IMPACT PHASE

From the beam's initial amplitude of vibratory motion to the point at
which impact damper failure occurs there exist several time spans of distinct
motion which the impactor experiences. These types of behavior can be
observed by calculating the phase angle for each impact across a half cycle of
vibration (see Appendix C). Plotting this phase angle in the range from 00 to

1800 as a function of the cavity amplitude of vibration yields distinct and
well defined patterns and trends for the impactor. These patterns for the one

mode case are illustrated in Figure 17. Each impact is denoted by a point
marker on these figures. Phase plots are read from bottom to top while
progressing from right to left as time increases and amplitude decreases. By

reading this graph the number of impacts per half cycle can be determined for

any given amplitude. For the case of higher amplitudes the phase plot depicts
an infinite number of impacts for a given amplitude. This fact can be
observed by noticing that the point markers, representative of each impact,
meld into a solid line. When amplitudes diminish below the bounce-down and
stuck impactor failure range it is clear that well defined periodic motion of
the impactor is occurring. This periodic motion takes one of two forms. The
first is a pattern exhibiting an even number of impacts per half cycle while
the second contains an odd number of impacts. From this well defined periodic
motion the impactor motion degenerates into what is referred to as chaotic
motion. This is a type of motion during which no discernible pattern can be
extracted. Each zone of chaotic motion then flows into two clear paths know
as period doubling. These two paths soon merge into one solid line during
which well defined periodic motion of one less order occurs. The combined use
of phase plot Figure 17 and loss factor Figure 12 leads to the conclusion that
the effectiveness of the impactor increases as the number of impacts per half
cycle decreases prior to impact damper failure.

In the case of the phase plot, Figures 18 and 19, the higher mode shapes
do play a significant factor in the analysis of impactor behavior. The
presence of higher modal frequency vibration disrupts the well ordered motion
that is observed in the simple harmonic oscillator and one mode classical

elastic cantilever beam case; Figure 17. The presence of higher frequencies
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also disrupts the phenomenon of stuck impactor failure. In place of stuck
impactor failure the impactor experiences low relative displacement impacting
or high intensity bounce-down. In the event the impactor does become stuck it
is quickly slung free by the presence of high frequency vibration. While the
higher mode frequencies do disrupt the ordered behavior of the impactor it can
be seen that significantly fewer impacts per half cycle occur at lower cavity
amplitudes.

This study, like that of Brown and North4 , found that variations in the
mass ratio affected the phase plots only by increasing and decreasing the
number of impacts that occur in a set time frame for the case of one mode. It
is observed that smaller mass ratios yield more dense plots because of the
increased number of impacts which occur during a incremental decrease in beam
cavity amplitude. From this it is concluded that a decrease in the impactor
to beam mass ratio increases the number of impacts required to lower the beam
cavity vibrational amplitude by a constant value. This implies that the
individual effectiveness of each impact is reduced as the miss ratio is
lowered. Another point of significance is that variations in the mass ratio
do not affect the amplitudes or phase angles for which each distinct pattern
of motion occurs. In the presence of higher mode frequencies the phase plots
differ as a result of varying the mass ratio but in no discernible pattern.

Unlike the mass ratio, variations in the coefficient of restitution, e,
do have a major affect on the phase plot. This analysis shows that while
lower values of the coefficient of restitution result in higher loss factors,
Figure 15, lower coefficients of restitution also cause bounce-down and stuck
impactor failure to occur at much lower amplitudes; Figures 20 and 21. An
example of this is a value of the coefficient of restitution equal to 0.5 for
which stuck impactor failure occurs at an amplitude as low as 3.0. In
comparison a value for the coefficient of restitution of 0.6 results in the
termination of stuck impactor failure at an amplitude of 5.0. As previously
discussed lowering the value of the coefficient of restitution becomes less
effective in decreasing the time required to damp the continuous elastic
cantilever beam vibration oscillation to a given amplitude when the
coefficient of restitution is less than 0.5. The use of phase plot Figure 20
may help to explain this phenomenon by noting that lowering the value of the
coefficient of restitution decreases the amplitude at which stuck impactor
failure ceases. This in turn narrows the amplitude range during which
efficient damping occurs. This results in a trade off between the energy
dissipative properties of the coefficient of restitution and the lower
efficiency damping of bounce-down and stuck impactor failure.

KBB-9



CONCLUSIONS

1. The impactor behavior for an impact damped continuous elastic
cantilever beam is characteristically the same as that of an impact
damped simple harmonic oscillator.

2. The magnitude of the damping effectiveness for an impact damped continuous
elastic cantilever beam behaves similarly to the damping effectiveness of
a simple harmonic oscillator.

3. The most effective damping of the continuous elastic cantilever beam and
simple harmonic oscillator occurs when the cavity vibrational amplitude
is less than unity. With the use of phase plots it is shown that this
corresponds to impactor motion of less than 2 impacts per half cycle.

4. The presence of higher mode frequencies does not change the damping
effectiveness of the impactor. This leads to the conclusion that the first
modal frequency predominates impactor damping effectiveness.

5. The loss factor is directly related to the mass ratio. A specific loss
factor can be determined by dividing the loss factor by the mass ratio.
This results in a single specific loss factor curve with respect to the
cavity vibrational amplitude.

6. The loss factor is a function of 1/(l-e) during periodic motion with a
finite number of impacts occurring per half cycle. Dividing the specific
loss factor by (l-e) yields a single curve with respect to the cavity
amplitude with the exception of the bounce-down followed by stuck impactor
failure and total impact damper failure.

7. The loss factor can be expressed as a constant of magnitude 1.0. It is
shown that the product of the loss factor and cavity amplitude divided by
the product of the mass ratio and (l-e) is reasonably constant.

8. For the case of one mode clear patterns of impactor motion can be observed
from the phase plot. This motion begins with bounce-down followed by
stuck impactor failure at high cavity amplitudes. This degenerates to
periodic motion with a distinct finite number of impacts per half cycle at
moderate cavity amplitudes. This periodic motion is characterized by
chaotic motion and period doubling. Impactor motion of one impact per
half cycle is soon followed by impact damper failure. This occurs at low
cavity amplitudes when the impactor experiences less than one impact per
half cycle.

9. The presence of higher modal frequencies disrupts the regularity of
impactor motion.

10. The time scale of the amplitude decay curve is directly related to the
mass ratio. Cavity amplitude plotted with respect to the product of the
mass ratio and dimensionless time results in a single curve.

11. While the impact damper does not require frequency tuning it does
require amplitude tuning. This is the result of the fact that impact
damping effectiveness is a function of the cavity's vibrational amplitude.
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APPENDIX A - SYSTEM MATHEMATICAL MODEL

A continuous beam with frictionless impact damping is represented by
Figures 1 and 2. A detailed derivation of the equations of motion which model
this system are presented by Nale5 . Figures 1 and 2 are representative of the
physical system in dimensional variable form. For this study and the benefit
of future studies the system is made dimensionless in the following manner.
The beam length, L, is the unit of length with the exception of the impactor
relative displacement. The cavity length, H - E -D, is used as the unit of
length for the dimensionless analysis of the relative displacement. The unit
of time is the beam characteristic wave time, Tc. The beam mass is used as
the unit mass. The equation of motion of the beam is

84y 82y
EI - + -- - Foexp(iQT) 1(T) 6(X-Xf)

8X4  aT2
1 n

+ - l(x-Xo)-l(X-Xo-E] EPis(T-Ti) (A.1)

with boundary conditions given by

aY 82y O3Y
Y(O,T) - - (0,T) - -(L,T) - -(L,T) - 0 T > 0

ax 
X2  

X3

and initial conditions given by:

8Y
Y(X,O) - F(X) and -(X,O) - G(X) 0 < X < L

clT

The equation of motion (A.1) which models the physical system shown in Figures
1 and 2 is made dimensionless with respect to the appropriate unit variables
in equation (A.2). Dimensionless variables in (A.2) are denoted by lower case
letters corresponding to upper case diminsional variables in (A.1).

84 y 82 y n

I + - - foexp(iwft) l(t) 6(x-xf) + go(x) Z pi6(t-ti) (A.2)
Ox4  at2  i-I

1
where: go(x) - - i-lX-xolx-xo-eX

eX

Boundary conditions:

y(0,t) - y'(O't) - y"(l't) - y'off(l't) t > 0

Initial conditions:

y(x,O) - f(x) and y(xO) - g(x) 0 < x : 1
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The impactor motion of the impact damped classical elastic cantilever
beam is characterized by four distinct types of behavior. Each of these types
of motion are individually modeled by an appropriate set of equations. Once
the type of behavior that is occurring is determined the correct model is used
to calculate the position, velocity, and acceleration of the impactor and beam
at the next point in time.

The simplest case of impactor behavior is impactor free motion (impactor
not at the cavity wall). During this period of motion the beam and impactor
are totally independent of one another. The beam is modeled as a simple
classical elastic cantilever beam having a single sinusoidal point load
located any where along the beam length with the exception of the center of
the beam cavity. The equation of motion for the beam is solved using the
method of generalized displacements (see Nale5). The generalized
displacements, velocities, and accelerations are determined using the method
of LaPlace transforms. The resulting Fourier solutions for beam
displacements, velocitips, and accelera-irons are valid until the next impact
is experienced.

The impactor in free motion is modeled as a free particle in rectilinear
motion. The constant velocity with which the impactor travels is determined
at the time of the most recent previous contact with the beam cavity wall.

When the position of the impactor coincides with that of the beam cavity
wall an impact or collision of the beam cavity wall and impactor occurs. The
impact is modeled by applying the coefficient of restitution theory. The
relative velocity ii between the impactor and the beam immediately prior to
impact is related to that immediately after impact ui by:

ui' - -eui (A.3)

The time at which impact occurs is determined when the absolute displacement
of the beam cavity wall is equal to that of the impactor. While this time of
impact is modeled as instantaneous, the resulting impulse applied to the beam
occurs across a finite nonzero cavity width.

A more difficult type of motion to model is that of bounce-down. Motion
of this nature is experienced by the system when consecutive impacts on the
same cavity wall occur with consistently shorter time intervals between
impact. This results in smaller maximum relative displacements between the
impactor and cavity wall for consecutive impacts. While experiencing this
type of motion an infinite number of impacts occur during a finite period of
time. The finite time during which bounce-down occurs is readily determined
by means of a convergent geometric series expansion (see Nale5 ). Bounce-down
terminates with the impactor resting at the cavity wall for until the
acceleration of the cavity wall reverses direction. This occurrence is
referred to as "stuck impactor failure".

The impactor is said to be stuck at the cavity wall when the following
three conditions occur simultaneously. First, the impactor must be located at
the cavity wall. Second, the velocity of the impactor relative to the beam
must be zero. Finally, the beam must be accelerating toward the impactor.
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During stuck impactor failure the total energy of the freely vibrating
impact damped classical elastic cantilever beam system remains constant. At
the same time energy is being exchanged between the impactor and beam. This
energy transfer process from the beam to the impactor during stuck impactor
failure explains why minimal damping occurs even when the impactor is stuck at
the-beam cavity wall.

While the impactor is stuck there exists a normal reaction between the
impactor and the cavity wall. This normal reaction is a direct function of
the cavity acceleration. The impactor is slung free of the beam cavity wall
and set back in free motion when the normal reaction vanishes. The normal
reaction between the impactor and cavity wall is eliminated only when the beam
cavity acceleration changes direction.

These four states of impactor activity are used to determine the
appropriate set of equations to be used in calculating the position, velocity,
and acceleration of the impactor and beam for each progressive point in time.
Free motion and simple impact are modeled with relative ease. Bounce-down and
stuck impactor failure are more difficult, but not intractable (see Nale5).
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APPENDIX B - LOSS FACTOR

The loss factor is first illustrated for the simple harmonic oscillator.
The results are later applied to the beam model. The loss factor is defined
as the change in potential energy E with respect to itself. This relationship
is expressed in its most general form as shown in Equation (B.1):

AE
7 - (B.1)

E

For the case of the simple harmonic oscillator the potential energy, E -
ky2/2, is simply the potential energy of the linear spring. The derivative of
the spring energy with respect to the spring deflection, y, is used to
approximate the change in energy, AE - kyAy. Using the expressions for E and
AE for the simple harmonic oscillator in the general expression (B.1) the loss
factor is expressed simply as a function of spring amplitude of vibration:

- 2Ay/y per cycle (B.2)

The loss factor is in practice calculated using an averaging process by
means of a least squares parabolic fit about five full cycles of motion. The
change in amplitude, Ay, is expressed as a function of the time rate of change
of the amplitude and the average period of oscillation. For this study the
loss factor is expressed in dimensionless form. This is done by dividing the
loss factor per cycle by 2w resulting in a loss factor per -dian.
Substitution of the change in amplitude results in Equation ,B.3).

1 y(t n )1 - Tn per radian (B.3)

7 y(t n )

The loss factor for the impact damped classical elastic cantilever beam
is determined in a similar manner from (B.3) by using the beam cavity
amplitude of vibration in place of the spring deflection y used for the simple
harmonic oscillator. This substitution results in a loss factor for the
impact damped cantilever beam at the center of the cavity longitudinal
coordinate.
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APPENDIX C - PHASE ANGLE CALCULATION

The phase angle is used to determine where the impactor collides with the
sinusoidal oscillating cavity wall. This measure is made in degrees across
each half cycle from 00 to 1800. The phase angle 0i for the impact which
occurs at time ti is easily calculated using Equation (C.1).

- 1800 (ti'tn)/(tn+l'tn) (C.l)

The times, tn and tn+l, are representative of when the acceleration of the
cavity wall changes direction sign.
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NONOBSTRUCTIVE IMPACT DAMPING APPLICATIONS FOR

CRYOGENIC ENVIRONMENTS

A. V. Panossian

Rockwell International/Rocketdyne Division
Canoga Park, California

Abstract

Viscoelastic materials cannot be utilized for vibration damping applica-
tions in cryogenic and severe pressure and flow environments. Such environments
exist in many rocket engines; it is a challenging task to design for optimal
structural damping in such systems. Impact damping techniques essentially work
on the basis of momentum exchange via the energy dissipated by collisions of
the impacting material with the vibrating mechanical structural. This method
can be effectively utilized in rocket engines when used in such a way that it
does not obstruct this flew.

Extensive impact damping experimentation was carried out in Rocketdyne's
Engineering Development Laboratory on the Space Shuttle Main Engine (SSME)
liquid oxygen (LOX) inlet splitter vanes. These splitter vanes often exper-
ience very high amplitude and high frequency (around 4000 Hz) vibrations, and
during some post-hot-fire test inspections, cracks have been identified on
their vane/shell interface, internally. In an effort to reduce the overall
mentioned vibration levels of these vanes, holes were made through one of the
abovementioned vanes and were filled with different metallic and nonmetallic
materials at different levels; vibrations were induced by an impact hammer and
a high frequency/high amplitude electromechanical shaker and responses were
measured under different fill levels and with different materials filling the
holes. The overall grms vibration levels were reduced drastically with the
holes filled at 3/4 level. This paper will report on the findings of these
experiments, will analyze the results, and will make recommendations for the
application of such unobstructive methods for damping structures in harsh
environments.

Work reported herein was sponsored by NASA/Marshall Space Flight Center under

Contract NAS8-40000.
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Introduction

In cryogenic and severe pressure and flow environments, and even in high
temperatures, vibration damping' is a challenging problem, to say the least.
Viscoelastic materials have found widespread applications in moderate to
normal environments under ambient temperatures and pressures. However, very
little (if anything) has been done in the areas of cryogenic damping.

The abovementioned harsh environment exists in many parts of rocket
engines, and this is often coupled with high-amplitude vibrations that can
potentially be catastrophic. Thus, it is desirable to design some form of
structural damping into such systems in order to be able to damp out the
anomalous vibrations. Design changes are often effective; l however, sometimes
simpler solutions can be more appropriate since it is not always possible to
implement design modification without resorting to drastic measures.

The effectiveness of damping treatments is related to the extent of vibra-
tion energy being converted into some other form of energy. In the case of
viscoelastic materials, some of the vibration energy is dissipated in the form
of heat, while in impact damping applications, this energy is transformed into
kinetic energy via the motion of the impacting particles, and eventually into
heat through friction. 2  The main reason for damping treatments is to reduce
vibration amplitudes and thus avoid structural failures. There are normally two
main sources of structural vibration failures: fatigue failure that is
related to stress level when parts fail due to increased dynamic stress,3 and
displacement of the structural parts that fail when it exceeds a particular
threshold.

4

In an effort to find an alternate option (alternate to the now implemented
aod successful vane modification--see Ref. 1) to fix the anomalous vibrations
of the liquid oxygen (LOX) inlet splitter vanes of the Space Shuttle Main
Engine (SSME), a study was initiated that was directed toward utilizing the
impact damping methodology with a new approach. The idea was to make holes
through the length of the vanes (from top to bottom) and fill these holes with
different materials and study their effects on the vibration of the vanes. The
vibrations were induced by a high-frequency/high-amplitude electromechanical
exciter (Wilcoxon D125L) and an impact hammer for low-frequency response. Mea-
surements of acceleration were recorded from five accelerometers equidistantly
located along the midspan of the right vane (right as one looks down through
the LOX inlet right-side-up) and at the driving point (Fig. 1). Moreover, mode
shapes were derived from a 25-point grid of accelerometers located equally
spaced on the surface of the vanes (5 x 5). The damping ratios for each mode
were generated and compared with the damping ratios under each material damp-
ing. A band-limited flat random excitation between 3000 and 6000 Hz was used
to eycite the tea at the bottom of the vanes, on the shell between the two
leading edges of the vanes.
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Oescription of Tests

The vibration and modal tests of the baseline tee were carried out first,
and data was recorded and processed in the form of frequency response
functions (FRFs), power spectral densities (PSDs), mode shapes, and dampiny
ratios. Then, four 1-mm-diameter holes were made by EDM through the vanes
(Fig. 1). These holes were first filled and tested with 7-, ll-, and 23-mil
steel balls at 1/2-, 3/4-, and 7/8-full levels. It was determined that the
3/4-full level was the best among the three levels tested. Then zirconium
oxide (ceramics) balls of 10-mil diameter were introduced in the holes and
tested for vibration levels with virtually the same amplitude and vibration
conditions applied. Similar tests were carried out with nickel powder and
tungsten powder.

All the tests were performed according to the rules of modal/vibration
testing. Namely, the tee was suspended by flexible rubber bands to simulate a
free-free condition and the shaker was bolted on a fixture with the moving tip
(with a load cell (PCB) attached to it) glued on the bottom of the tee (Fig.
2). The driving point response was kept at 13.7 grms, and the vane responses
at different locations along the midspan ranged from 20 grms all the way to
154.6 grms at the leading edge midpoint of the right vane.

holes

diameterX iae
0.040 in' 

LO ne

holes/ diameter driving point

Fig. 1. LOX Inlet Tee
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Fig. 2. Measurements of Modal/Vibration Tests

Test Results

Two main types of data were generated in the present tests. Namely, modal
data: mode shapes and damping ratios at various frequencies and vibration
(accelerance) levels of various modes at different material conditions.

Vane Mode Shapes and Damping Ratios (Baseline)

The vibration mode shapes of the vanes were generated from a 25-point grid
acceleration measurements on each vane. These mode shapes are plotted on
separate plots (Fig. 3). As the summed FRF indicates (Fig. 4), there are
about 10 modes between 3000 and 6000 Hz. Moreover, there are only a couple of
modes below 3000 Hz. The dominant modes are above 4200 Hz and are torsional
modes, especially the dominant modes at 4740 Hz (the probable 4-kHz mode under

LOX loading--see Ref. 1) is the strongest. The less dominant modes below 4200
are bending modes (Fig. 3).

The damping ratios of these modes were quite low (Table 1). They ranged
from 0.076% for a strong symmetrical torsional mode at 4748 Hz to 0.20% for a
mode at 5239 Hz.
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Fig. 4. Vane FRF

Vibration (Accelerance) Amplitudes Under Different Materials

Eight of the 10 modes above 3000 Hz were isolated and the accelerance
amplitudes and damping ratios for each material fill (at 3/4-full level) were
recorded (Table 1). The results of damping performance with such a little
amount of mass added (the mass of steel taken out was about 1 gram and the
amount of the heaviest material (tungsten) added was also 1 gram) is really
surprising. The amplitude reduction with tungsten seemed to be the greatest
in general. Thus, for the torsional mode at 5021 Hz, the damping ratio was
0.0006 and the amplitude was 52.8 g/lb when empty, and It changed to 0.0035
and 9.5 g/lb (Fig. 5), respectively, a factor of greater than 5. See Table 1
for details. A sample of three modes is presented in Fig. 5 through 7.
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Table 1. Amplitudes and Damping Ratios of LOX Inlet Tee
Splitter Vanes Under Various Material Damping

MODE I
FREQ., AMPLI.,DAMPINGI I HOLES F!LLED WITH DIFFERENT MATERIALS - 3/4 FULL

REDUCTION FACTOR IEMPTY I STEEL 23 1 4IRCON OX.1 STEEL 7 1 STEEL 11 j NICKEL POR.1 TUNGSTEN POR. .

Frequency-Hz I B 3807 3805 I 3805 3807 3805 I 3807 3804 H
Amplitude g/lb I 30.2 30.5 I 26.3 24.5 27.0 I 29.3 27.5 0

Damping Ratio I 0.0009 0.0009 I 0.0009 0.001 0.0009 I 0.001 0.0011 D
Vibration I - 1 I 11.2 1 Ii1.2 1.25 E
Reduction Factorli _ 1

Frequency-Hz I B 4064 4063 4061 4061 4060 I 4057 4056 N

Amplitude g/Ib 1 57.5 43.4 39.8 37.3 34.9 I 29.0 25.2 0

Damping Ratio 1 0.0009 0.0011 0.0012 0.0013 0.0014 I 0.0017 0.0016 0

Reduction Factorl I - i1.2 1.3 1 1.4 1.6 I 1.9 1.8 1 EI 2
I IIII III

Frequency-Hz I I 4257 4258 4256 4259 4257 I 4257 4258 I
Amplitude g/lb I 27.6 32.6 27.1 30 30.5 I 20.4 25.5 0

Damping Ratio I 0.0015 0.0011 0.0015 0.0012 0.0012 I 0.0013 0.0013 0

Reduction Factorl I - -1.2 1 1 -1.1 1 -1.1 I 1.4 1 1.1 1 EI 3 -
I III I III

Frequency-Hz I I 4309 I 4308 4308 4308 4306 I 4306 4306 H

Ampli.tude g/lb I 55.5 I 48.5 40.5 52.8 38.4 I 46.4 41.5 0

Damping Ratio I 0.0012 I 0.0013 0.0013 0.0013 0.0014 I 0.0016 0.0015 0

Reduction Factorl I - I 1.14 1.4 1.06 1.45 I 1.2 1.34 E

I I I I III
Frequency-Hz I T I 4748 I 4744 I 4743 4741 4740 I 4737 4734 H

Amplitude g/lb I I 70.1 I 49.0 I 42.7 41.1 37.0 I 35.0 18.2 0

Damping Ratio I . 0.0008 I 0.001 I 0.0009 0.001 0.0013 I 0.0017 0.0028 0

Reduction Factorl I - 1 1.4 I 1.64 1.7 1.9 I 2 3.9 E

I II I I I I I

Frequency-Hz I T 5021 I 5017 I 5018 5015 5014 I 5010 5010 H

Amplitude g/ib I 52.8 I 30.1 I 27.6 20.4 18.9 I 17.1 9.4 0

Damping Ratio 1 0.0006 I b000o I 0.001 0.0012 0.0015 I 0.0017 0.0035 D
Reduction Factorl I - I 1.76 I 1.9 1 2.6 2.8 I 3.1 5.6 1 E

I II I I I I7

Frequency-Hz 1 I 5239 5233 5234 5235 5232 I 5232 5234 H

Amplitude g/lb 1 29.5 26.4 26.3 20.5 22.6 I 32.7 30.9 0

Damping Ratio 1 1 0.002 0.0028 0.0025 0.0034 0.0025 I 0.0016 0.0017 D

Reduction Factori I - 1.12 1.12 1.44 1.31 -I1.11 -I1.05 EI 6
I III III

Frequency-Hz T I 5606 5604 5603 5605 I 5603 5593 5593 I
Amplitude g/ib I 7.9 7.0 7.0 6.0 I 7.0 6.9 6.4 0

Damping Ratio I 0.001 1 0.0011 1 0.0011 0.0012 1 0.0011 1 0.001 0.001 I0
Reduction Factorl I - 1 1.13 1.13 i1.32 I 1.13 1.15 1.2 E

I I I 8
NOTE: B - Bending mode I * Torsional mode Reduction Factor - Amplitude empty i. Amplitude filled
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Conclusions and Recommendations

The modal and vibration tests reported herein add significantly to the
knowledge base on damping characteristics of structures. The methodology
presented, commonly called impact damping technology in the industry, has been
used extensively in many applications. But the approach taken in these
experiments--with tiny amounts of various materials added to such a small
volume and producing such a tremendous effect--is novel. The potential
application of such an approach to rocket engine components (like turbine
blades) to laser systems, etc., is promising. Further experimentation is
necessary to fully understand the mechanisms involved, the optimal fill levels
necessary, and the best dimensions of holes for specific applications.
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DAMPING TREATMENT FOR JITTER REDUCTION
ON A HIGH POWER OPTICAL BENCH

Paul H. Chen
TRW Space and Technology Group

Redondo Beach, California

Eric M. Austin
CSA Engineering, Inc.
Palo Alto, California

ABSTRACT

As part of a High Energy Laser program, a large optical laser system is required
to meet a stringent RMS specification for residual jitter. Using MSC/NASTRAN,
the optical jitter due to ground and coolant-flow excitations was predicted as a com-
bination of the dynamic motions of several optics. The modal strain energy method
was used both in identifying the best candidate locations for damping treatments
as well as predicting damping levels. The final solution incorporated constrained
layer damping treatments on an interface component between the mirrors and their
mounts and link dampers between selected locations on the optical bench.
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1. Introduction and Objectives

A proposed high power laser system modification requires an optical bench and
associated optics and their mounts. Some of these optics require coolant flows
to maintain proper mirror figure. The coolant flowing through the high power
mirrors generates substantial optical jitter. This jitter degrades the quality of the
propagated laser beam. One of the primary priorities of the optical bench design
was to minimize optical jitter.

Jitter reduction techniques applied to this high power optical bench (HPOB) can
be summarized in three categories: 1) reduce the disturbance energy input from the
coolant flow and the surrounding excitation environment, 2) improve the structural
design to enhance its rigidity, and 3) provide a good passive damping treatment
design to minimize mirror vibration response. This paper presents the technique,
approach, and results of the passive damping treatment on the HPOB.

Six optics are in the primary beam path of the HPOB. Three of these are cooled
mirrors. All mirrors are kinematically mounted on three-tab tangent flanges. The
tangent flange, in turn, is mounted on a relatively rigid and heavy ball-mount.
All mounting connections are jointed by spherical washers and bolts. The ball-
mounts are bolted on their respective supporting plates, which are 3/4-inch-thick
steel plates, welded to the bench members. The HPOB is designed as a three-
dimensional space frame structure. Its overall dimensions are 44 inches wide,
180 inches long, and 81 inches high. The main frame members are 6x6x1/2 inch
rectangular steel tubes. The bench's diagonal bracings are W6x25 steel I-beams.

2. Damping Design Analysis

This project was split into several phases of work: Phase I was a study of the fea-
sibility of reducing residual beam jitter by adding passive damping to the HPOB,
and Phases II and III were concerned with the design of the passive damping treat-
ments. The residual jitter is calculated as a function of the angular displacements
(rotations) of the mirrors on the bench. NASTRAN was used to predict these
rotations and evaluate the optical (ray-tracing) -equations under random excita-
tions applied at both the base of the bench and at the cooled mirrors. The residual
jitter is given as a displacement power spectral density function (PSD). The overall
goal of the program was to reduce the residual jitter to a normalized RMS jittVer of
1.0 unit. The sources of disturbances for the optical bench were excitations from
equipment and seismic effects and the coolant flowing through the cooled mirrors.
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2.1 Phase I Analysis

The Phase I analysis was performed using a crude finite element model. The
optical bench is modeled with BAR elements, typically one element per span of the
structure. The model is crude because the optics are represented only by lumped
masses and stiff bars. There are six optical components represented in the model.
Figure 1 shows the Phase I finite element model and the locations of these optical
components.

Figure 1. Baseline Phase I finite element model

A random response analysi3 was performed using the Phase I finite element
model with the given excitations and the residual jitter predicted. Approximately
91% of the total residual jitter was duc o only four modes between 87 and 245 Hz.
The suppression of these modes was tle criteria for the effectiveness of the Phase I
damping study.

Three different approaches to damping were considered: constrained layer damp-
ing, damped links, and tuned-mass dampers. All three have certain types of situa-
tions in which they work best.

Constrained layer treatments work by placing a viscoelastic material (VEM)
layer between the structure and a constraining layer. As the structure is deformed,
the constraining layer opposes the motion and causes shear in the VEM. Strain
in the VEM is the me:,anism for energy dissipation. The treatments are mode
shape dependent and work best for frequencies that were targeted by the design,
but their effectiveness may spill over to all modes in which the particular member
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participates. Several diagonal I-beams were chosen to receive a constrained layer
treatment. These I-beams were modeled in detail in order to predict the strain
energy in the viscoelastic material accurately. A 0.050-inch-thick layer of Sound-
coat's DYAD 606 was chosen as the VEM, with a 0.50-inch-thick steel constraining
layer. The predicted RMS of the residual jitter was reduced by 56% using this
treatment.

Damped links dissipate energy by connecting pairs of points on the structure
that have high relative displacements with a viscoelastic spring. These dampers,
like constrained layer treatments, are not explicitly frequency dependent. They
will work to some degree for any mode that has relative displacements between the
endpoints. Four damped links were incorporated into the Phase I model and shown
to be effective in reducing the jitter.

Tuned-mass dampers (TMD's) are a way of damping a single mode only. They
work by attaching a damped spring-mass device to the structure at a location of
high displacement. TMD's are inherently frequency dependent. They need to be
tuned, usually by varying the mass, to a specific frequency just below the target
frequency. The potential for damping is very high, but the tuning must be precise.
By combining damping links and TMD's, a 64% reduction of residual jitter was
predicted.

It was shown during the Phase I analysis that, using either the constrained
layer treatments or a combination of link dampers and TMD's, the predicted RMS
residual jitter could be reduced by over 50%. The Phase I analysis showed that by
successfully identifying the modes causing jitter, passive damping treatments on a
relatively small portion of the structure could be used to reduce the residual jitter
on a relatively heavy and stiff steel bench.

The Phase I model was used to ascertain if passive damping was a viable method
of reducing the jitter. However, the detail of this model was insufficient to actually
design the passive damping treatments. Also, the relatively flexible optical com-
ponents were not modeled. With the incorporation of these optical components, it
was known that the problem modes could be altered and the overall jitter could be
expected to increase substantially.

2.2 Phase II Analysis

The finite element model used for the Phase II analysis (see Figure 2) contained more
detailed models of some of the optical components and their support structures,
but was otherwise similar in resolution to the Phase I model. The actual mirrors
were still modeled as concentrated masses attached to the outer housing through a
tangent flange. The finite element model of the Phase II mirror tangent flange is
shown in Figure 3.
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Figure 2. Baseline Phase II finite element model

Figure 3. Phase II finite element model of mirror tangent flange
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The Phase II baseline analysis showed that the highest jitter-contributing modes
were now in the optical components rather than the bench. Based on the modal
strain energy (MSE) distribution shown in Table 1, the best areas for damping
treatments are, in order, the tangent flanges, the mirror support structures, and
the frame elements. Damping on the tangent flanges was judged to be the moot
effective.

% of Total Jitter Percent of modal strain energy
from this Mode Tangent Flanges Mirror Support Frame Members

Mode 11 59% 74% 17% 4%

Mode 13 7% 89% 5% 1.6%

Mode 22 15% 8% 59% 24%

Mode 33 7% 6% 72% 13%

Table 1. Critical modes predicted by the Phase II model with their contributions
to the total residual jitter

The frame members themselves do not contribute much of the MSE to any
of the troublesome jitter modes. However, the motion of the frame cannot be
neglected if the final jitter goal is to be met. The Phase I analysis produced two
possible approaches to damp frame modes: constrained layer damping and link
dampers. Considering all factors, the link dampers were selected for the frame
damping treatment.

The modal strain energy distribution in the modes of interest showed strain
energies in many of the bench members. From a large number of candidate pairs of
end points, eight locations were chosen. The endpoints were chosen 1,ased on the
highest relative displacements along the lines between them.

The link dampers were designed so that they could be fabricated from commer-
cially available materials. The damped link is essentially a pipe that spans between
two points on the structure and contains a viscoelastic joint inserted along its length.
Figure 4 shows a schematic drawing of the link along with the end fittings.
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Figure 4. Schematic drawing of the damped link and its end fittings

2.3 Phase III Analysis

The finite element model of the tangent flange used in Phases I and II was coarse
and neglected some structural details that turned out to be important, most notably
the rim used for attachment to the ball-mount and the three "tabs" used to attach
the mirror to the tangent flange. The goal of Phase III was to verify the damping
design and analysis of this most critical jitter component. A detailed finite element
model of the mirror and tangent flange was created and the frequencies and mode
shapes were verified using results from a modal test. The model was then used in
designing an optimal damping treatment under the known restrictions. Figure 5
depicts the updated tangent flange finite element model.

The verified and tuned finite element models of the mirror assemblies were then
integ.ated into the Phase III system model together with several other structural
updates, such as increasing the thickness of the ball-mount supporting plates and
adjusting the supporting brackets. Figure 6 presents the Phase III system finite
element model of the High Power Optical Bench.
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Figure 5. Phase III finite element model of mirror tangent flange

Figure 6. Baseline Phase III finite element model
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2.3.1 Residual Jitter of the Baseline System

Dynamic analysis of the complete Phase III model was executed, the system modal
strain energy distributions were recalculated, and residual jitter for the undamped
baseline structure was determined. An inherent damping level of 0.4% structural
(Q=250) was assumed for the "undamped" analysis and was also added to the pre-
dicted damping for the damped analysis. Table 2 gives the approximate percentage
contributions of the major jitter modes. Additionally, the percentage of the modal
strain energy for each mode is given for the tangent flanges as a group, the support
plates as a group, and the space frame. The last row of the table gives a weighted
average of the contributions of the three groups. This average is the sum of the
percentage of the MSE for each group multiplied by the percentage RMS contribu-
tions for each mode. It is only a rough indicator of the relative contribution of each
group to the overall residual jitter.

This table shows that four modes contribute over seventy percent of the RMS
jitter. The tangent flange components are still the top area requiring vibration sup-
pression. The supporting structures rank second, and the space frame contributes
less than 20 % to the RMS jitter.

Modes 16, 17, and 19 contribute over sixty percent of the total RMS jitter.
These fall in the frequency range of the primary modes of the tangent flanges.
However, in contrast to the Phase II analyses, only between one-half and two-thirds
of the modal strain energy of these modes is attributable to the tangent flanges: the
rest is divided between the support plates and the frame elements. The conclusion
from these results is that the tangent flanges as a group still contribute more to the
residual jitter than any other areas of the structure, but not by as much as previously
predicted. This does not eliminate the need to damp the tangent flanges, but it
does de-emphasize it slightly. It is likely that any additional significant increases
in damping will have to come from damping treatments for the mirror support
structures and the space frame.

The support plates contribute the next largest amount to the residual jitter.
The percentages listed in the Table give the total modal strain energy in all of the
parts of the support plates, i.e., base plate, grout plate, grout, stiffeners, etc.

The modal strain energy in the frame is the sum of the main frame members.
It gives a rough idea of the potential for damping through link dampers and con-
strained layer treatments on frame members. The latter concept was investigated
during Phase I, but found to be too inefficient to justify the cost in design and
application.
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% of total jitter Percent of modal strain energy
from this Mode Tangent Flanges Mirror Supports Frame Members

Mode 16 47.4% 42.1% 27.6% 19.5%
134 Hz

Mode 17 4.3% 36.6% 7.3% 40.9%

137 Hz

Mode 19 10.5% 49.6% 16.3% 16.8%
142 Hz

Mode 22 2.5% 43.3% 7.9% 39.3%
148 Hz

Mode 36 5.1% 25.7% 43.9% 16.7%
199 Hz

Mode 39 7.6% 23.3% 58.7% 9.7 %
224 Hz

Mode 47 3.0% 35.5% 30.8% 22.3 %
280 Hz

Weighted Contribution 33.5% 26.8% 17.2%

Table 2. Major modes for residual jitter in the undamped Phase Ill baseline model

along with their contribution and composition
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2.4 Residual Jitter of the Damped System

During Phase II, link dampers were found to be an effective way of introducing
damping into frame-dominated modes. As a result of damping design analysis
performed during Phase III, three additional links were proposed for the frame.
The locations of the damped links are shown in Figure 7.

Figure 7. Proposed locations of link dampers for the HPOB

Due to design constraints, the Phase II damping concept for the tangent flanges
was determined to be the best type of treatment. The optimal treatment uses a
constraining layer separated into two pieces. The treatment consists of a two-piece,
40-mil-thick stainless steel constraining layer with 5 mils of ISD 110 VEM.

Before the residual jitter of the damped system was calculated, the stiffness due
to the link and tangent flange damping treatments was added to the model. The
models of the tangent flanges were tuned so that their frequencies matched closely
those of the damped tangent flange model. The damped links were included using
ROD elements.

The damping was predicted by the modal strain energy (MSE) method using
the strain energies predicted by the model of the damped system. The MSE method
states that the damping is the product of the VEM's modal strain energy and loss
factor. However, the sheer size of the system model and detail needed to model
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the VEM meant that the amount of VEM strain energy had to be inferred from
the isolated detailed model of the damped tangent flange. The damped links were
included in the model as rod elements whose properties give it an axial stiffness
equivalent to that of the actual damping link. The modal strain energy of each
group (tangent flanges and links) was multiplied by the loss factor of the VEM
and again by a participation factor. This participation factor is an estimate of the
percentage of the strain energy that the VEM would see if it were in the model. For
example, the participation factor for the damped links is 0.9 since calculations show
that 90% of the links' strain energy will go into the VEM. However, only about 5%
of the system strain energy in the tangent flanges can be considered to be VEM
strain energy.

After all of the updates to the system finite element model, a random response
analysis was performed. Figure 8 shows the damped residual jitter and RMS plotted
over the undamped baseline. Most of the modes have shifted upwards in frequency
due to the stiffness added to the system by the damping treatments.
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Figure 8. Residual jitter for the HPOB with link and tangent flange damping
treatments
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There are only three distinct jumps in the RMS curve. The modes causing these
jumps and their approximate composition are listed in Table 3. The tangent flanges
are still the largest contributors to the jitter, but either the frame or mirror support
plates also participate strongly in each of the modes. Constraints on the tangent
flange damping treatments make the prospects for greatly improved damping of the
tangent flanges poor. The likely place to concentrate efforts for additional damping
would be either the frame elements or the mirror support structures.

% of total RMS Percent of modal strain energy
from this Mode Tangent Flanges Mirror Supports Frame Members

Mode 16 27.5% 37.9% 27.0% 24.1%
138 Hz

Mode 21 6.1% 39.5% 8.9% 41.8%
151 Hz

Mode 39 13.2 % 24.8% 58.0% 9.2 %
228 Hz

Table 3. Major modes for residual jitter in the damped system along with their
contribution and composition
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3. Summary

The final RMS value for the residual jitter of the damped system is 0.73 units,
which meets the residual jitter goal of 1.0 units. Table 4 presents in summary
form the reduction of jitter predicted during each of the three Phases. The passive
damping treatments on the HPOB reduced the residual jitter by 60 percent. The
most effective concept for the optics' damping is a constrained layer treatment on
the mirror mount tangent flange. The promising damping concept for the heavy
steel optical bench is link dampers at selected bench locations.

% Jitter
Phase Damping Treatment Reduction

IA 0.05" DYAD 606 VEM, 0.5" Steel 56
Plate on 8 Diagonal Members

I

IB 4 Link Dampers + 2 Tuned-Mass Dampers 64

II II 5 Mils 3M ISD 110 VEM with 40-Mil 67
Stainless Steel Plates on Tangent
Flanges, 8 Link Dampers on the Bench

III III Same as Phase II, 13 Link Dampers Used 59

Table 4. Summary of residual jitter reduction

KCA-14



ANALYSIS AND TESTING OF A

DAMPING TREATMENT FOR A
MULTI-COMPONENT SPACE STRUCTURE

Eric M. Austin and Conor D. Johnson
CSA Engineering, Inc.
Palo Alto, California

Laurence S. Gittleson
Lockheed Missiles and Space Company, Inc.

Sunnyvale, California

ABSTRACT

A large space structure required at least 1% viscous damping for each of its
four lowest global modes to reduce vibration response. Due to the complexity of
the problem, two of the three components in the system were represented only by
stiffness and mass matrices at a reduced set of points. The third component was
represented by a finite element model. Damping designs were produced and their
performance predicted by computing system-level modal strain energy using both
the finite element model and the condensed stiffness matrices. The chosen design
produced the required damping with less than 0.2% added weight.
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1. Problem Description

This paper summarizes joint work between Lockheed Missiles and Space Com-
pany, Inc. (LMSC), and CSA Engineering to design, implement, and test a space-
qualified add-on damping treatment for a multi-component space structure. The
damping treatment was designed for a cylindrical, barrel-like portion of a struc-
ture that is connected to two other larger, more complex structural components.
Due to modeling and other interface considerations, only a finite element model
(MSC/NASTRAN) of the main section was available for analysis. The remaining
subcomponents of the structure were provided in the form of mass and stiffness
matrices represented at a reduced set of points in the condensed structures.

The modes of interest for the structure were the first four; the first two being
the most critical. These modes occurred in two pairs: the first pair at approxi-
mately 16 Hz and the second at 23 Hz. The goal was to increase the system-level
viscous damping in both pairs of modes to at least one percent. There was a severe
restriction on added weight for the structure, and the main section had many areas
which were inaccessible due to proximity of surrounding structure.

2. Analysis Techniques

The system analyses were performed by integrating the main structure and two sub-
structures into a full system model. The three components of the system model are
shown schematically in Figure 1. The process of integrating the condensed matrices
with those of the finite element model was as follows. All of the operations were
done within MSC/NASTRAN using Direct Matrix Abstract Programing (DMAP).
Substructure 1 was condensed down to 44 points scattered throughout the structure.
There were a total of 129 nonconstrained degrees of freedom (DOF's) among these
points, and there were six attachment poi-its between the main finite element model
and the first substructure. Given the relationship between the DOF's in the ma-
trices and the attachment points to the finite element model, the inclusion process
started by defining GRID points for each of the 38 internal points in the condensed
structure. The remaining six points correspond to the attachment points, and were
already included as GRID points in the finite element model. A partition vector
was then created for the substructure based on sets defined in the MSC/NASTRAN
input whose members were the connection and "dummy" GRID points. The parti-
tion vector was used to insert the outside mass and stiffness values into the global
mass and stiffness matrices. Finally, a MERGE command was done to integrate
these matrices in to the system matrices. A similar procedure was followed for the
Substructure 2.
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Substructure Main Substructure
1 Structure 2

Condensed Condensed

[MI] -- [M 2]
and and
[K 1]_____ [K 2]

* 153 DOF • 1927 DOF • 357 DOF
• 6 nodes connect 0 34 nodes connect

to the main structure to the main structure

Figure 1. Schematic view of system finite element model

To make predictions of the system-level damping, it was necessary to have knowl-

edge of the system-level strain energy for the modes of interest. NASTRAN will
calculate the strain energy for any or all of the model's structural elements. How-
ever, the substructures' matrices contain no structural elemenu, per se. A method
of correctly extracting the strain energy from the missing parts of the structure
was therefore required. The strain energy was obtained by performing the follow-
ing triple-product of the stiffness matrix and partitioned eigenvector for the two
condensed portions of the system model.

(Strain Energy)i = {0,}T[K]{ Oi} (1)
2

where

{Oi,} = component eigenvector of mode "i" partitioned out of the

system eigenvector

[K] = component stiffness matrix
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Substructure
Mode 1 2 Main

1 2.2% 25.1% 72.7%
2 2.4% 26.2% 71.4%
3 21.1% 59.0% 20.0%
4 22.8% 58.0% 19.2%

Table 1. Distribution of modal strain energy in the system for the first four modes

The modal strain energy (MSE) was printed out for each of the substructures
in the form of vectors with lengths equal to the number of eigenvectors extracted
in the analysis. The system-level MSE was found by simply adding the absolute
strain energies of the three components. From this, the percentage of MSE in any
particular set of elements could be found. This technique was checked for accuracy
on a test model.

Table 1 gives the percentage of strain energy predicted for the three compo-
nents of the undamped system model. The task of obtaining 1% viscous da-nping
(2% structural) in Modes 3 and 4 is formidable since the structure on which a damp-
ing treatment can be applied only has 20% of the system-level modal strain energy
for these modes. The predicted mode shapes of the modes of interest are shown in
Figure 2. Since the mode shapes are predominantly global, the modal strain enrgy
is predictably well distributed.

First mode pair Second mode pair
~ 16 Hz - 23 Hz

Figure 2. Lowest two mode pairs predicted by the baseline finite element model
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3. Candidate Damping Designs

Past experience with similar cylindrical structures has shown that high damping
levels, on the order of 10% viscous, could be achieved if the main structure were
integrally damped, i.e., the panel sections were made of sandwiched viscoelastic
material construction. However, since the structure already existed, this strategy
could not be implemented. An add-on treatment of this type was also out of the
question due to the large amount of added weight that would have resulted.

The weight-efficient alternative to a full-coverage constrained-layer treatment
is to apply damping treatments selectively to structural members containing high
MSE in the modes of interest. Analysis showed that the stiffening rings were good
candidates. Of these rings, Ring 1 was chosen for detailed study; it had the best
combination of accessibility and modal strain energy. Figure 3 shows the unde-
formed finite element of the main structure. Ring 1 has been refined to allow for
modeling of candidate damping treatments. Even though this ring was accessible,
there were some tight space limitations on the inner and outer surfaces. Figure 4
shows the cross section of the ring and the envelope for the damping treatment.

.U o ine e n mRing 
__-QKRing 2

Ring 3

Ring 4

Ring 5

J_] __.[ Ring 6

Figure 3. Undeformed finite element model of the main structure

Throughout the iterative design processes, the designs were also driven by factors
other than maximum damping. Ease of application was one, since disassembly of
the actual article was not possible. Another factor, as shown in Figure 4, was that
the outer flanges of Ring 1 were riveted to an inner C-section every few inches. The
height of the rivet heads was roughly 0.050 inches.
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0.04'

Nominal Dimensions Envelope Allowed for
Damping Treatment

Figure 4. Cross section of Ring 1 with the original space restrictions

Three types of add-on passive damping treatments were investigated: tuned-
mass dampers, damped links, and constrained-layer damping. Tuned-mass dampers
were ruled out mainly because of the practical problems of tuning and maintaining
the devices for a space application. Also, the nature of the mode shapes and the fact
that there were two pairs of closely spaced modes meant that tuned-mass dampers
were not a good candidate solution for this problem. Link dampers were not a
viable solution since there are not any accessible locations of the structure having
large relative motions. The remaining choice was some type of constrained-layer
treatment.

Many types of constrained-layer treatments were evaluated. Since the target
modes shapes were simple, all of the preliminary designs were evaluated on a model
of one quarter of Ring 1 with symmetric boundary conditions. All of the early
treatments sought to use the relatively large clearances, 0.56 and 1.0 inches, on the
front and back sides of the ring, as shown in Figure 4. Some candidate solutions
are shown in Figure 5. Within the original space restrictions, none of the candidate
solutions was found to produce the required damping, but the treatments with the
constrained-layer treatment on the outer rim of the ring were the most promising.
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Layer Layer, 6 PL Layer, 4 PL

Rigidly Attached
en on of Ring, 2 PL

Stiff Members

VEM-
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Figure 5. Candidate add-on damping treatments for Ring 1
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At this point, these preliminary results were presented for review. The orig-
inal clearance envelope was based on worst-case assumptions of adjoining struc-
tures moving out of phase with respect to each other. After reanalysis of these
conservative restrictions, Lockheed decided to increase the allowable space on the
outer surface of the ring from 0.040 to 0.25 inches. This allowed for a much stiffer
constraining layer on the outer surface of the ring. The eventual recommended
treatment consisted of 0.060 inches of 3M's ISD 110 and a stiff, 0.19-inch-thick
graphite-epoxy constraining layer. Analysis showed that a three-piece constraining
layer could be used.

ISD 110 was chosen because its shear modulus, 900 psi, was near optimum for
this application and its loss factor, 1.4, was outstanding. A simple free-free beam
was fabricated to verify the VEM properties at the frequency and temperature
(room temperature) of the application.* Since ISD 110 is not self-adhesive at room
temperature, 3M recommends either an epoxy or heat treating to adhere the VEM
to the base structure. Beams using both methods were built. From a modal test of
the beam, the shear modulus and loss factor were inferred using 6th-order theory."
The shear modulus was close to the expected value, but the loss factor was roughly
60% low.

Faced with lowering the system damping predictions by 60%, an alternate vis-
coelastic material had to be sought. The revised design called for 0.090 inches of
3M's Y4945 acrylic foam tape. This material had a shear modulus lower than the
optimum, but its loss factor was an excellent 1.1. The free-free beam tests were re-
peated, and the material properties were confirmed. Additional qualification tests
were performed by the manufacturers of the structure. These tests, tailored to this
specific mission, included outgassing, life, humidity, and flammability. The VEM
was judged satisfactory in all respects except outgassing. The exposed edges of
the material were subsequently coated to prevent any possible harmful effects from
outgassing.

The choice of Y4945 had two notable side benefits: 1) it is self-adhesive and
2) two 0.045-inch-thick layers would easily clear the rivet heads. During application,
the first 0.045-inch layer was applied over the rivet heads, leaving a visible bump.
A tool best described as a "cookie cutter" was then used to remove the VEM in the
local area of the rivets. After the second layer of VEM was applied, no discernable
bump existed over the rivet heads.

*This work pre-dates use of the direct complex modulus testing now in use at CSA.
"Rao, D.K., "Frequency and Loss Factors of Sandwich Beams Under Various Boundary

Conditions," Journal of Mechanical Engineering Science, No. 20, Vol. 8, 1978.
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4. Test Confirmation

A modal test was instituted to verify the effectiveness of the damping treatment.
The treatment applied to the test article differed from the recommendation only
in that the constraining layer was 0.25-inch-thick steel instead of 0.19-inch-thick
graphite-epoxy. This variation was due to the tight test schedule. The system
was tested in both damped and undamped configurations. Table 2 shows a com-
parison of the frequencies predicted with the undamped NASTRAN model versus
the measured frequencies. Note that the damping values were obtained for this
"undamped" configuration. These figures represent the inherent damping that
exists in spacecraft structures assembled from many components. Damping of this
type is not predictable and can only be determined through testing.

Mode 1 Mode 2 Mode 3 Mode 4

Analysis 16.44 Hz 16.57 Hz 22.10 Hz 23.47 Hz
(% viscous) (-) (-) (-)

Test 15.55 Hz 16.28 Hz 23.31 Hz 23.66 Hz
(% viscous) (0.32) (0.38) (0.85) (0.60)

Table 2. Predicted and measured frequencies of the untreated structure

The frequencies predicted using the NASTRAN model of the damped system are
given in Table 3 along with the test results. The predicted frequencies agreed fairly
well with the measured values, generally within 5%. The NASTRAN-predicted
damping values shown in Table 3 have been obtained by adding the inherent damp-
ing given in Table 2 to the damping prediction from the finite element analysis.
It is not clear if this approach is correct since it is not known how the inherent
damping is effected by the add-on damping treatment; somewhere between none
and all of the damping measured in the "undamped" structure should be added to
the analytical predictions.

There are several possible reasons for the over prediction of the damping values,
but most would be sources of only small inaccuracies. The most likely candidate
is the quality of the system-level mode shapes and, consequently, the distribution
of the system-level modal strain energy. Also, it was known that the finite element
model was not entirely representative of the actual structure in its test configuration.
One major difference was a mass hung on the test structure that participated heavily
in the third and fourth modes. This could help explain why the correlation for these
modes was not as good as for the first two.
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Mode 1 Mode 2 Mode 3 Mode 4

Analysis 16.64 Hz 16.79 Hz 22.14 Hz 23.48 Hz
(% viscous) (2.0) (2.2) (1.1) (0.8)

Test 16.11 Hz 17.04 Hz 23.37 Hz 23.53 Hz
(% viscous) (1.9) (2.2) (1.0) (1.0)

Analysis plus
inherent damping (2.3) (2.6) (1.9) (1.4)

Table 3. Predicted and measured frequencies of the damped test structure

5. Conclusion

A lightweight damping treatment was designed successfully for a large, multi-
component structure. The modal strain energy was applied to predict system-level
damping, even though much of the structure was represented by condensed mass
and stiffness matrices. Good agreement was achieved between results of a modal
test and the analysis. Faced with obstacles like weight, size, and outgassing, a treat-
ment was designed that met all of the goals at a weight increase of roughly 0.2%.
The validation of this damping solution has allowed LMSC to consider integrally
designed damping treatments in possible critical situations to minimize the number
and magnitude of late-emerging problems.
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Modal Survey of the PACOSS DTA

Russell N Gehling

Martin Marietta Space Systems
Denver, Colorado

Abstract

Many future space systems will be constructed of large, flexible
structures and will possess high modal density at low frequencies.
Some missions envisioned for these large space systems (ISS) require
rapid retargeting and precision pointing which lead to control
bandwidths overlapping several structural modes. Therefore, some
form of structural control will be necessary to avoid excessive
excitation of the flexible modes. The purpose of passive/active
damping is to allow the system to efficiently meet its performance
goals.

The Passive and Active Control of Space Structures (PACOSS) program
investigated the accuracy and practicality of designing and
implementing passive damping in structures typical of many 5S5
configurations. This involved design and fabrication of a passively
damped Dynamic Test Article (DTA) possessing high modal density at
low frequencies. Also, an active modal damping system was designed
and implemented. In order to verify the design methodology and
effectiveness, a comprehensive modal survey was conducted on the DTA
to identify flexible modes in the I to 10 Hz range. This paper
discusses the modal survey, modal parameter identification, and
comparison of measured and analytic results.

Modal parameter identification proved to be difficult for several
DTA modes in the frequency range of interest. While the identified
natural frequencies were quite repeatable, damping ratios and mode
shapes tended to exhibit scatter on the order of 20% about the
average, depending on the particular measurement and curve fit
parameters. The difficulties were traced to both the highly damped,
closely spaced nature of the modes and, to some extent, the data
quality. Although parameter identification was inconsistent in some
instances, the overall correlation between the test results and
analytic predictions was quite good. Tests with the active modal
damping system turned on (closed loop) were also conducted.
Measured results were compared with corresponding analytic
predictions of the control system performance and the system
functioned as predicted, working in concert with the passive damping
design.

Important conclusions may be drawn from the results of the DTA modal
survey. Of most significance is the fact that predictable levels of
passive damping can be designed into complex LSS-type structures.
Also, the achievable damping levels significantly improve perform-
ance such as LOS settling time. Testing of the DTA revealed the
need for study and application of more robust parameter
identification algorithms to systems possessing highly damped,
closely spaced modes.
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INTRODUCTION

The ultimate goal of the PACOSS program was to demonstrate the
synergistic benefit of passive damping working in concert with
active vibration damping as applied to large space systems.
Demonstration and verification of the technology required
development of the Dynamic Test Article (IYTA) pictured in Figure 1.
The DTA is dynamically traceable to future large space systems
through the Representative System Article (RSA) described in
Reference 1, and depicted in Figure 2. A methodology for
passive/active control design and its application to the RSA is
presented in Reference 2. Details of the design and analysis of the
several DTA substructures are given in Reference 3. Following
fabrication, fixed interface modal surveys were conducted on each
substructure. Results from these tests are discussed in Reference
4. An important aspect of system traceability is the presence of
high modal density. In order to verify the high modal density of
the DTA, and measure the accuracy and effectiveness of the damping
design methodology, a modal survey was conducted on the DTA. This
paper presents the results of the DTA modal survey and analytic
modal analysis.

Figure 1 PACOSS Dynamic Test Article (DTA)
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Figure 2 PACOSS Representative System Article (RSA)

TEST SETUP

The modal survey of the DTA generally followed the initial test
plan. However, preliminary investigations, test modifications, and

additional shaker configurations were included as the testing
progressed. These efforts were undertaken in an effort to assure
that the best possible data, within equipment and time constraints,
were acquired. The following paragraphs present a brief overview of
the DTA modal survey setup and testing.

Setup for the DTA testing involved assembly of a temperature control
chamber, erection of a support fixture, and assembly of the DTA.
The overall test setup is diagramed in Figure 3. The temperature
control chamber performed quite well throughout the DTA testing,
although wide fluctuations of the temperature outside the chamber
(65.F to 90.F) required that the air conditioner be on
continuously. The air flow from the air conditioner was directed
upwards and did not measurably disturb the DTA.
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The primary goal of the DTA modal survey was accurate determination
of the modal parameters (frequency, damping ratios, shapes) for
flexible modes below 10 Hz. Also, the performance and effective-
ness of the active damping system was to be accessed through
measurement of the increase in damping it provided to selected DTA
modes. The modal parameters were to be determined through curve
fitting of frequency response functions generated by measuring an
external force and the resulting accelerations at selected points on
the structure.

Figure 4 shows the measurement point locations on the DTA. The
large number of measurements were required in order to obtain a
valid reduction of the analytic mass matrix for use in orthogon-
ality products between the measured and predicted mode shapes.
Also, measurements were included across component interface points
to allow troubleshooting of interface stiffness if the need arose.

Figure 3 Modal Survey Setup
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Figure 4 DTPA Measurement Point Diagram

The relatively low frequency range of interest and the light weight
of some DTPA components required that shakers fixed to ground be used
to excite the DTPA. Suspending the shakers invariably resulted in
coupling of the shaker suspension dynamics to the dynamics of the
structure through rotational and lateral stiffness of the stinger in
the 1 to 3 Hz range. However, in some instances, achieving a stiff
shaker fixture with frequencies above 15 Hz was not possible.
Also, the bending stiffness of the stinger can change the test
article's behavior when attached to a fixed shaker. Therefore,
swivel stingers with ball joints on each end were used to eliminate
dynamic coupling of the shaker and DTrA through rotational and
lateral stinger stiffness. The platform which supported the shaker
for excitation of the tripod top plate was a case where stinger
stiffness allowed coupling of the platform dynamics to the DTA.
Figure 5 dramatically demonstrates the effect on the drive point FlIP
of using a relatively stiff nylon stinger compared to the swivel
stinger. The significant differences between the FRFs in the 3 to 6

Hz range are probably due to large rotational deflection of the
tripod top plate for DTrA modes in that frequency range. The same
measurement was acquired using an impact hanumer (no stinger
involved) which, although noisy, verified the FlIP acquired using the
swivel stinger.

Figure 6 is a photo of the overall DTA test setup inside the theral
control chamber. Note the previously mentioned shaker support
platform constructed around the tripod top plate visible at the top
center of the pt. pev ing the components
demonstrated tha the ninny acceleronmetems cables hanging from the
structure have no measurable effect of the DTA dnamics.
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Figure 6 OTA Test Setup
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Before acquisition of full 188 measurement data sets, several exci-
tation methods were attempted at a few drive points to determine
appropriate force levels and to identify the method which gave the
highest quality data. Also, the necessary frequency resolution was
determined by comparing curve .t results (multi-degree o)f freedom
polynomial) from data collected for several values of resolution.
The results indicated that a frequency resolution of 0.03125 Hz was
adequate for acquiring the frequency response function (FRF) meas-
urements in that fitting of data acquired at higher resolution
produced virtually the same modal parameters as that acquired at
0.03125 Hz. Burst random excitation for 80% of the acquisition time
period (32 seconds using 401 spectral lines and a 12.5 Hz bandwidth)
with no windowing produced slightly better quality data than
straight random excitation and Hanning windowing. Swept sine
testing generated far better quality data but had little effect on
curve fit results at points of relatively high response. To avoid
conflicts in facility scheduling, multipoint random excitation and
measurement techniques were selected for acquisition of the FRFs
from which modal parameters would be extracted.

A Hewlett-Packard 3565 Modal System runngig Structural Measurement
Systems (SMS) multi-input, multi-output software was used to acquire
and process the measurements. This system, as configured for the
DTA test, allows acquisition of up to 55 response points from up to
four uncorrelated inputs. Thus, 220 FRF measurements may be
acquired simultaneously. Using the acquisition parameters mentioned
above, and taking ten averages, measurement of 55 response points
takes only 5 minutes and 20 seconds. Including processing time,
storage, and setup recall, a full set of 752 (188 x 4) FRF
measurements took about 1. 5 hours. This rapid data acquisition
combined with the test chamber temperature stability allowed data to
be acquired for the full DTA at a virtually constant temperature.

DATA ASSESSMENT AND ANALYSIS

Assessment and analysis of the measured data were conducted as the
data sets were acquired. The FRF measurements were qualitatively
reviewed immediately, and preliminary parameter identification was
performed before the test configuration was changed. This process
allowed discovery of several instrumentation problems and
measurement anomalies which were investigated and corrected without
repeating a configuration setup. Limitations of the available
instrumentation resulted in poor measurements at points of low
response, (typically on the order of 0.005 g's or less). This
complicated the identification and separation of several closely
spaced modes, particularly those involving coupled horizontal
bending of the solar array masts and blankets. However, many modes
were consistently identified and thus are likely to be very
accurate. The following paragraphs discuss the FRFs and the process
of parameter identification performed on the measurements.
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Generally, the quality of the measurements was quite good at the
drive points and at points of high response level. Figures 7(a) and
7(b) show typical drive point FRFs as examples of the data quality.
The coherence for most of these measurements was excellent
throughout the acquisition bandwidth. An anomaly seen in some of
the data was high level noise in horizontal solar array blanket FRFs
acquired using multipoint random excitation. Specifically, the
response on the blanket due to excitation at points far removed from
the solar array, such as the equipment platform, was very noisy as
shown by Figure 8. This figure compares FRFs 20x/21x and 39y/21x.
The level of 39y/21x is well above the noise floor of the PCB-302
accelerometers, and other data indicated that the level should have
been much lower. Also, measurement 39y/42y, which was acquired
simultaneously is much cleaner as shown by Figure 9.

The poor quality and high level of 39y/21x was probably caused by
nonlinear behavior of the TMDs which contaminated the separation of
responses performed by the multipoint random excitation algorithm
which assumes a linear system. The T) nonlinearity arises from the
geometric lateral stiffening effect and plastic behavior of the TMD
beams. In general, tests where the solar arrays were excited
directly tended to produce somewhat more noisy measurements than
when the arrays were not being driven directly, again probably due
to nonlinear response of the ThDs.

1502 frCno (2 NM,. rNCO (2 IH4.1D0 2."

(a) 97x/97x (b) 97y/97

Figure 7 Typical Drive Point FRFs
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parameter Identification

Identifying the number of modes and their parameters in the 1 to
10 Hz range of interest proved to be a challenging task. While
several modes were easily and consistently fit, many closely spaced
modes could not be adequately separated by local, multi-degree of
freedom rational fraction polynomial (RFP) curve fitting techniques
(Ref. 5). The combined effects of high modal density and high
damping tended to mask distinct modes in the FRFs, thereby resulting
in two or more modes being fit as a single mode. An example of this
is seen by considering a portion of the measured FRF: 42y/42y.

As shown in Figure 10(a), a curve fit of the three modes apparent in
the FRF from 2.44 to 6.47 Hz appears satisfactory and gives the
modal parameters shown in the figure. However, when the three poles
identified from 42y/42y are used to fit the measurement: 20x/42y,
the extremely poor fit shown by Figure 10(b) results. This occurs
because there are actually six modes present in the response at 42y.
Note that 20x is on the axis of symmetry and thus should only show
antisymmetric modes (refer to Figure 4). If 20x/42y is refit to
determine the additional three modes as shown in Figure 10(c), and
then all six of the identified poles are used to determine the modal
residues for each FRF, satisfactory results are achieved for both
meaurements as shown by Figure 11. Attempting to determine all six
poles from either measurement gives results like that shown in
Figure 12 where the algorithm uses the additional modes to match
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noise in the data. Essentially, the features in the FRF caused by
the several modes are not as strong as noise in the measurement,
even though the measurement is of acceptable quality. However, if
the poles present in the FRF are known (and accurate), using the RFP
method to find the residues results in a very good fit. This effect
was seen even when working with extremely clean data.

Thus, the important task is to identify and estimate all the poles
present in a given set of FRFs. Polyreference techniques were
developed for just this purpose. The polyreference method tried on
the DTA data was a time domain technique which tends to be sensitive
to noise and did not work well on the highly damped DTIA modes.
Frequency domain polyreference techniques may work better on the DTA
data, but this has not been investigated or demonstrated under the
PACOSS program.

The aforementioned effects limited the accuracy of estimated modal
damping ratios even when using the best measurements for determin-
ing a selected pole. While estimates of natural frequencies were
consistent from one measurement to another, modal damping estimates
varied by up to 20 percent for closely spaced, highly damped modes.

Xl: 2.438 YLR: -7.91 YIEt -7.91
X2: 6.469 Y28: -21.26 Y2B: -29.96

T

Ln

CO Mode fn zeta Residue
t No. (Hz) MZ amp phase (deg)

0 1 2.84 6.91 3.16 190
.. J2 4.24 1.78 0.17 169

3 5.42 3.13 0.65 163

-70. 00 iif
2.44 FE 50m/i 6.4?

Figure 10(a) 3 Mode Fit of 42y/42y
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A total of 22 unique modes were identified from the DTA testing.
The identified modes are listed in Table 1 with the observed ranges
listed for the modal frequencies and damping ratios. The quantity
listed as weighted phase error in the table is defined by the
following equation:

n dof
AO~q

n dof

i=1

where:

T = weighted phase error

Aei  = phase difference (-90' to +900)
between dof i and dof of greatest magnitude

= modal magnitude at dof i

Weighted phase error is an indication of the quality of the synthe-
sized mode shape. Generally, the smaller the weighted phase error,
the more accurate the estimate of the mode shape. Note that in
Table I, relatively high phase error generally corresponds to modes
exhibiting greater scatter in their frequency and damping
estimates. The high phase error is attributable to a failure of the
curve fitting technique to fully separate closely spaced, highly
damped modes. This occurs when the response components present in
an FRF due to individual modes (complex residues) are not correctly
determined by the particular parameter identification technique
applied to the data.

The procedure used in determining estimates of the mode shapes was
to obtain the best estimates of the poles in a given data set and
frequency range. The poles were obtained using the RFP multi-
degree of freedom method. Once a satisfactory and complete set of
poles was obtained, the mode shapes were found by holding the poles
constant while determining the residues for each measurement. Based
on the consistency of results, and on orthogonality products
discussed below, a set of orthogonal modes was selected as the
"best" measured modes for use in correlation with the analytic
model.
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ANALYTIC MODEL CORRELATION

The measured results agreed fairly well with the pretest analytic
model. This indicated that data from a sufficient number of
excitation points had been acquired to allow identification of all
major flexible modes below 10 Hz. The following paragraphs discuss
the post-test tuning of the DTA finite element model and present the
final comparison of predicted and measured modal parameters.

A comparison of the predicted and measured natural frequencies and
mode shapes indicated that the dynamic coupling of the solar arrays
to the rest of the DTA was different from that predicted by analy-
sis. Final correlation and tuning of the solar array substructure
model with the results from substructure testing had not been
completed before the full DTA test. Therefore, modification of the
DTA solar array models involved completing the substructure tuning.

Results from the solar array substructure modal surveys indicated
that the initial modeling of the root assembly was too stiff. This
was due to the physical nature of the actual root assembly which
consists of a solid aluminum insert bonded inside the solar array
mast. In order to more accurately characterize the stiffness of the
bonded root assembly, a model including the inner member, the mast
tubing, and the bonding material was constructed for comparison with
the properties of the original model. The inner member was modeled
using solid elements, as was the bonding material, and the mast
tubing was modeled using plate elements. In the analyses, the
stiffnesses of the various members alone were adjusted to have
equivalent stiffnesses to beams. For example, unit loads were
applied to the insert model alone and the material properties
adjusted so that the resulting deflections and rotations were the
same as those of a beam with a solid section of the same size.

The stiffness of the bonded assembly model was 62% that of an
equivalent beam. It was noted, however, that the model might be in
error due to the use of solid elements. To determine the accuracy
of the model, the bonding material was replaced with aluminum and
the resulting stiffness was again compared with an equivalent beam.
This analysis showed that the model using aluminum properties for
the bonding material was 80% as stiff as an equivalent beam.
Therefore, the final stiffness of the assembly was adjusted to be
0.62/0.8 or 78% that of a uniform aluminum beam.

The pretest DTA model also did not include the deformed geometry of
the solar arrays. The tip of the solar array mast deflected more
than 5 inches under gravity over a mast length of 8 feet. This
geometry was included in the final DTA analysis.
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The only other significant change in the DTA modeling was the
addition of differential stiffness in the tripod analysis to account
for compression in the tripod legs. A minor correction made to the
modeling was the deletion of some accelerometer masses that had
remained in the substructure models from correlation with
substructure modal survey results. These small masses were not
deleted from the pretest DTA model in the interest of expediency in
completing the pretest analysis. Note that no arbitrary changes
such as stiffness or mass adjustments were made in order to obtain
better agreement between the analysis and test results. This
philosophy, followed throughout the development of the substructure
models, has resulted in a DTA model which is based solely on
standard and measured physical properties. In fact, the final DTA
model could be considered a rigorous pretest model.

In order to more accurately represent the frequency dependency of
VEM material properties, the component models were run with both
4 Hz and 9 Hz VEM stiffness. Modes below 6.5 Hz were taken from the
4 Hz run, and those above from the 9 Hz run. VEX loss factors at
specific modal frequencies were used in the damping calculations.

Results Comparison

Analysis of the tuned DTA model was performed using direct stiffness
coupling of the reduced substructure models. Analytic modal damping
ratios were determined via the modal strain energy (MSE) method
using the appropriate loss factors (Ref 6).

For discussion of the experimentally identified modes, the analytic
modes may be grouped into four categories based on the modal strain
energy distributions. The four categories and number of flexible
modes in each category are:

10 Global modes
10 Nearly repeated solar array blanket modes

(symmetric/antisymmetric pairs)
7 Local appendage modes
12 Tuned mass damper (TMD) modes

Global modes are defined as modes in which no one component pos-
sesses more than 90 percent of the modal strain energy. These modes
are typically of greatest interest to the analyst because of their
importance to system performance. They are the modes most easily
disturbed by spacecraft maneuvers and, by their nature, affect the
entire system. Therefore, accurate prediction of global modes and
the associated damping design (passive or active) for those modes is
critical to achieving system performance goals.
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The five pairs of nearly repeated solar array blanket modes posed a
problem in terms of correlation with experimental modes through a
cross orthogonality product. Experimentally, the synthesized modes
tended to result in either one blanket or the other possessing all
the motion, i.e., they looked like a linear combination of the
analytic pair. For repeated roots, any linear combination of the
repeated mode shapes is itself a mode shape or, eigenvector. Thus,
the analytic blanket mode pairs were added and subtracted to obtain
modes for comparison with the measured modes. Two pairs of repeated
modes are dominated by the TIMs. The high damping and somewhat
local nature of these four modes precluded their identification.

The local appendage modes include a variety of modes where a single
substructure possesses more than 90 percent of the modal strain
energy. One of the predicted appendage modes was not identified
because it involved only antenna dish bending which could not be
adequately excited without driving the dish directly.

The 12 TM) modes are very local in nature. They are uncoupled from
the rest of the DTA and may only be disturbed by directly exciting
the TlDs. Since any attachment of a stinger to a TD would dras-
tically alter its behavior, no attempt was made to identify these
modes.

The points discussed above led to a set of 22 target modes. During
analysis of the test data, it became obvious that the nonlinear
behavior of the TMDs, and the relatively high noise level of the TM
instrumentation had seriously degraded the measurements on the
TMDs. This degradation was serious enough to introduce large errors
into the synthesized TMD modal deflections. Therefore,
orthogonality products were computed without the TM measurements.

In order to perform the orthogonality checks without the TMD meas-
urements, a mass matrix reduced to the measurements to be used in
the orthogonality products had to be generated. A static reduction
of the DTA mass and stiffness matrices without including the TM
measurements results in significant error in the solar array blanket
modes. Therefore, this method could not be used to generate a re-
duced mass matrix. An alternate approach to generating a reduced
mass matrix is to use the analytic modes calculated from a valid
reduction. Briefly, the unmeasured degrees of freedom are deleted
from the modal vectors and the resulting modes are then used to
compute the test analysis matrix (TAM) using the pseudo-inverse:

TAM (4 T)t . ¢-t

where

-t is the pseudo-inverse: (OTO)-l OT

Conditioning problems will arise if the modal vectors are very
similar (nearly linearly dependent). This can occur if the primary
degrees of freedom involved in a mode are deleted but the mode is
retained in generating the test analysis mass matrix. For the DTA,
only the target modes were retained, and all T measurements were
deleted.
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As previously mentioned, measured modal damping ratios tended to
exhibit some variation depending on the identification method.
However, the modes selected for comparison with the analytic results
were chosen on the basis of small weighted phase error and good
orthogonality. Therefore, the damping ratios of the selected modes
were assumed to be the best estimates of the true DTA behavior, and
were the specific values used for comparison with the analytic
results. The results are presented in Table 2 which lists the
comparison of the measured and analytically predicted frequencies
and damping ratios of the target modes. Also listed in the table
are the diagonal terms of the unnormalized generalized mass and
cross orthogonality products. These products were computed using
the real measured modes defined as:

01real = 0i cos i

where:

real = real modal amplitude at DOF i

= complex modal amplitude at DOF i

0. = phase angle between DOF i and DOF
of greatest magnitude

The orthogonality products are defined as:

GM = real * TAM ' Oreal

where:

Oreal = the measured real mode shape as given above

TAM = is mass matrix as given in Section 4.3

Note that the modal synthesis technique used in computing the
mode shapes should produce modes with unity generalized mass.

XORTH = Oreal TAM a

where:

real -- Oreal normalized to TAM

Oa = the analytic modes matrix used to generate TAM

The data presented in Table 2 show that all the target modes were
identified and that most correlate very well with the analytic
predictions. Correspondence of frequencies is excellent with the
exception on modes 9 and 18. Mode 9 is a local equipment platform
mode and mode 18 is a local antenna mode which is sensitive to the
postbuckled state of the antenna dish. The postbuckled state and
effects were noted during the antenna substructure modal survey, but
could not be accurately modeled.
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Damping estimates agree reasonably well with the predicted values.
In fact, the analytic value is bracketed by the measured range in
many cases (see Table 1). Excellent qualitative agreement of the
modes is shown in Figures 13(a) and (b) which present plots of the
corresponding measured and predicted shapes for two global modes.

While the diagonal cross-orthogonality terms listed in Table 2 and
the mode shape plots indicate good correlation for most of the
modes, the full orthogonality products exhibit significant off
diagonal coupling. The self orthogonality normalized to unity gen-
eralized mass is given in Table 3, and the cross orthogonality with
the analytic target modes is given in Table 4.

Table 2 Comparison of Identified and Predicted
Modal Parameters

Target Analytic Measured Measured Results Orthogonality Results

Mode No. fn (Hz) (%) Mode No. f n(Hz) C GM X-Orth Diagonal
Term

1 1.00 4.2 1 1.03 4.1 0.83 0.96
2 1.03 4.2 2 1.10 6.0 0.71 0.99
3 2.61 2.8 3 2.61 3.6 1.06 0.97
4 3.01 5.0 4 2.81 4.4 2.70 0.64
5 3.08 4.0 5 2.89 7.0 3.02 0.68
6 3.29 4.4 6 3.25 5.0 0.94 0.93
7 3.50 8.2 7 3.53 8.8 1.27 0.88
8 3.70 4.7 8 3.72 5.2 1.01 0.97
9 3.81 4.0 9 4.1 7.1 0.90 0.99

10 4.14 2.0 10 4.15 1.6 0.87 0.91
11 4.14 2.0 11 4.24 1.6 1.03 0.91
12 4.60 7.8 12 4.83 4.5 3.12 0.88
13 4.81 10.4 14 5.04 11.4 0.85 0.94
14 4.86 7.0 13 4.96 5.5 1.96 0.97
15 5.32 4.0 15 5.41 3.8 0.83 0.98
16 5.32 4.0 16 5.43 3.0 0.74 0.95
17 6.12 10.0 17 6.48 12.7 1.43 0.91
18 7.52 6.0 22 9.40 10.3 0.98 0.76
19 8.94 1.8 18 8.90 5.5 0.67 0.96
20 8.95 1.8 21 9.32 4.5 0.57 0.98
21 9.04 6.8 19 8.92 7.0 1.11 0.96
22 9.28 7.0 20 9.26 8.6 2.26 0.88

•See Table 1 for Variation in Results.
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Table 4 Cross-Orthogonality Product
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The correlation between the measured and analytically predicted
modes is exceptional considering the dynamic complexity of the DTA.
All global modes were predicted accurately in terms of frequency and
damping. However, the orthogonality products show significant
coupling between similar modes. Consideration of both the
generalized mass and cross orthogonality products gives an
indication of the source of error. Some experimentally synthesized
modes appear to be quite accurate while others possess error due to
the identification difficulties previously discussed.

For example, experimental modes 6 and 7 (see Table 2) exhibit little
coupling in the self orthogonality product, (Table 3). However,
there is significant coupling on the order of 30% with their
analytic counterparts as shown by Table 4. Together, these
observations indicate that these two particular experimental modes
are accurate estimates of the true behavior of the DTA. Other
factors such as repeatability and small phase error also indicate
that the 3.25 Hz and 3.53 Hz modes were accurately identified.
Thus, the coupling of terms corresponding to these modes in the
cross orthogonality product is attributable to some physical
difference between the actual DTA and the finite element model.
Comparison of a measured FRF with the corresponding analytic
prediction (Figure 14) confirms that the structure behaves somewhat
differently in the 3 to 4 Hz range due to these modes. Note that
modes 6 and 7 are both antisymmetric, global modes which are rather
closely spaced in terms of frequency considering the damping
present. Modes such as these can be quite sensitive to small
variations in the structure and thus are difficult to precisely
predict.

Examples of modes not accurately identified are measured modes 4 and
5. The presence of nearby, highly damped T / blanket modes, and
noisy TIM) measurements, made consistent parameter estimation of
these modes impossible using the RFP technique previously mentioned.
This is indicated by the variation shown in Table 1. Thus, the
relatively poor orthogonality results for these two modes are
primarily due to error in the measured mode shapes. However, as
shown in Figure 15, comparison of analytic and measured FRFs
indicates that while the behavior is similar, there is a definite
frequency difference between the analytic model and actual DTA in
the 2 to 3 Hz range. This must be due to a modeling error.

Overall, the agreement between measured and predicted DTA modal
parameters is excellent. This is shown by agreement of modal
frequencies and damping ratios, and demonstrated by comparison of
measured and predicted FRFs. Coupling in the orthogonality products
is primarily due to parameter identification difficulties traceable
to the algorithms used on the measured data. Use of more
sophisticated techniques may improve the synthesized mode shapes and
thereby the orthogonality products.
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C(ML'ROL SYSTEM PERFOW~ANCE

Investigation of the IYFA active damping system performance was con-
ducted by performing the same tests as in open-loop cases but with
the control system or., and feedback gains set to design values.
Analysis of the local velocity feedback system was accomplished by
coupling the actuator dynamics and feedback gains to the DTA modal
model. The active damping system consisted of six proof mass
actuators mounted on the JYPA ring truss at the locations shown in
Figure 16. These locations were selected in order to actively damp
the 2.6 Hz IYFA mode.- Figure 17 shows a photo of two actuators
attached to the ring truss. The control law applied to the DTA was
local direct velocity feedback where the inertial velocity at a
control point is fed back to apply a proportional force opposite the
velocity. Ideally, this force appears as a dashpot to ground on the
structure. Feedback gain settings were selected such that the
active control system would apply 5% modal damping to the 2.6 Hz
mode (in addition to the passive damping present). Besides the
inertial velocity feedback, relative velocity between the proof mss
and housing was sensed and fed back in order to adjust the local
damping of the actuator second order system.

Table 5 lists the actual feedback settings used in the closed-loop
tests. Analysis predicted that the control system would apply
significant damping to four modes in the 1 to 10 Hz range. Fitting
of the data from the tests confirmed the increased damping in four
modes with all other modes not significantly affected.
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The design feedback levels and actuator dynamics were coupled to the
tuned DTA modes in order to predict the closed-loop damping. Table
6 lists the predicted closed-loop damping ratios together with the
corresponding range of measured values for the four actively
controlled modes. Again, variation in the damping estimates was
seen depending on fit method. The data demonstrate that the control
system, while functioning as expected, had somewhat less authority
in the 2.6 Hz mode than predicted. This was due to a somewhat
smaller modal amplitude at the control points than predicted.

Comparison of predicted to measured FRFs at the control points
showed good qualitative agreement and verified that the control
system was behaving as predicted. Figure 18 presents the measured
and predicted FRFs at control point 3. Note the very low levels of
the transfer functions which, in the modal survey test, resulted in
1M accelerations on the order of 0.005 g's. Even with these low
acceleration levels, the control system performed well, indicating
that friction in the actuators was not a factor in the testing. At
points of higher response such as the solar array tip, the desired
effect of actively lowering the response of the 2.6 Hz mode was
achieved. This is shown by Figures 19 and 20 which present the
open- and closed-loop FRF and decay trace respectively, at the solar
array tip.

C

Figure 16 IYPA Actuator Locations
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Figure 17 Actuators Mounted on IJIA

Table 5 Feedback Gain Settings

RELATIVE VELOCITY INERTIAL VELOCITY
FEEDBACK SETTINGS FEEDBACK SETTINGS

(Z) (Ca %) (%.) (lb-sec/in.)

50 38 89 4.6
22 20 65 3.5
25 20 74 3.5
50 38 84 4.6
25 20 70 3.5
27 20 69 3.5
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Table 6 Closed-Loop Results

TARGET fn (Hz) N
MODE NO. ANALYTIC MEASURED ANALYTIC MEASURED

RANGE RANGE

3 2.54 2.51 - 2.60 8.1 6.7 - 8.1

13 4.67 4.91 -4 5.05 15.7 13.0 -* 16.0

17 5.96 6.35 - 6.40 17.8 15.1 -- 19.6

22 9.20 8.94 - 9.38 11.7 12.8 -- 13.1

Control Point 3: Me- , F00 Control Point 3: AnlyvtiC FAW0

i .. d

[0 d CoodeOO

Froqoomy 040s Pi l..0 : v bill

Figure 18 Open- and Closed-Loop FRFs at Control Point 3
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CONCLUS IONS

The modal survey of the Dynamic Test Article (DTA) achieved the goal
of identifying all significant structural modes in the 1 to 10 Hz
frequency range of interest. The test chamber, test setup, and data
acquisition system allowed acquisition of a large volume of data at
nearly constant temperature, thereby avoiding temperature dependent
viscoelastic material property variations. Data quality was very
good at excitation points and points of high response level. Also,
measurements were repeatable and indicated nearly symmetric behavior
of the DTA. During testing, excitation levels were such that many
measurements were of too low a level to obtain quality data with the
available instrumentation. However, the low response levels
correspond to small modal amplitudes and thus are not very important
in terms of synthesized mode shape accuracy. Nonetheless, future
testing will be improved by using very low noise instrumentation
which is good down to 1 Hz.

Parameter identification performed on the measured data was very
successful in consistently estimating 11 of the 22 target modes,
while achieving moderate accuracy for another 9 modes. However,
because of the closely spaced, highly damped character of the DTA
modes, significant variation of modal parameters, particularly
damping and residues, was seen for several modes. Only two modes
were relatively poorly identified. This experience points to the
need for application of more sophisticated parameter identification
techniques to the IYTA data, and perhaps some theoretical develop-
ment or tailoring of methods specifically for this type of problem.
Also, the effect of real world concerns such as noise and nonlinear-
ity in the data, and small phase errors due to instrumentation must
be assessed and, if possible, accounted for.

Other issues of concern were control system performance and behavior
of the TMDs on the solar arrays. The active control implementation
functioned well in concert with the passive damping and produced the
expected results. With regard to the TMDs, the particular tuned
mass damper design used on the solar array blankets behaved
nonlinearly and thereby degraded some measurements. However, the
TMD design did successfully damp the blanket modes.

Overall, agreement between the measured and analytic modal para-
meters is exceptionally good. The DTA is the most dynamically
complicated, damped structure to be rigorously modeled and tested,
yet the correlation of results is better than achieved in most modal
surveys. Perhaps more important than achieving precise agreement
with the analysis is the fact that targeted damping levels can
indeed be successfully designed into the fundamental modes of
complex structures. This was accomplished using both discrete and
distributed passive damping approaches.
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On a system level, the DTA modal survey demonstrated that high
levels of passive damping can be predictably designed into the
dynamically complex structures characteristic of future large space
systems. Further, passive damping will allow a relatively simple
active control system to be focused on only a few modes while
greatly improving performance. The demonstrated achievable damping
levels will perform quite effectively in improving the dynamic per-
formance of the structure in terms of settling and jitter response.
This is shown by Figure 21 which compares open and closed loop line
of sight (LOS) transfer functions to that predicted if the DTA
possessed the nominal damping of 0.2% (a level typical of precision
structures). Benefits to the overall system include reliable,
robust performance with lower weight at possible lower cost compared
to approaches not using passive damping.

4 __________ LS/ ~LOS/F 0 SKI.. Coo" Ond C10.441 LADDtos/ x to-

0.f . w so g: 0.00?

Oo.n L@oo

7 l t o 0\ 00
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Figure 21 LOS Transfer Functions
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APPLICATION OF PASSIVE AND ACTIVE DAMPING
TECHNIQUES TO THE PACOSS REPRESENTATIVE SYSTEM

Daniel R. Morgenthaler
Martin Marietta Astronautics Group

ABSTRACT Denver, Colorado 80201

This paper presents the results of a study performed on the Passive and Active
Control of Space Structures (PACOSS) Representative System Article (RSA). The
RSA is a representative large space structure (LSS) with optical components
inherent in its design. The study examines methods of achieving a performance
goal for a slew maneuver of the RSA generated by an attitude control system.
In order to achieve a prescribed goal for the slew, damping is added to the
flexible structural modes. Two damping approaches are considered: active
control alone, and the passive/active damping design approach utilized on the
PACOSS program. Quantitative estimates of the properties of the damped
systems generated using the two approaches are compared. The passive/active
approach is seen to result in a much more efficient overall system design.
Even using assumptions which favor the active control component, the
passive/active design methodology resulted in nearly 25% less added weight due
to active and/or passive control measures. Also, a 97% savings in active
control energy, and a simpler and more reliable overall system were achieved.

INTRODUCTION

Future military and civilian space systems will typically be very large but
lightweight. These characteristics lead to dense modal spectra at low
frequencies which often will overlap attitude control bandwidths. The mission
profiles of these systems also require low vibration levels of critical
components in order to meet mission goals. The PACOSS RSA design (Figure 1)
is based on a survey of planned and conceptual space systems required to meet
specific mission objectives. This survey revealed extensive requirements for
relatively large, lightweight structures possessing the ability for precise
pointing and, in some instances, rapid retargeting. The survey included
consideration of both military and civilian system concepts, and disturbances
affecting such systems. Further details of the mission survey, RSA
configuration, and system design are given in several publications (References
1,2,3).

The configuration of the RSA is not mission specific but a representation of
several missions and requirements in one system. The RSA reflects the mission
requirements of first generation LSS, and it is assumed that its mission would
utilize the reflecting surfaces inherent in its design in an optical,
infrared, or communication system. The analysis and design results,
therefore, are representative of systems with similar reflecting components
and other systems with requirements for vibration control.

There are essentially two design methodologies which can be used to reduce
structural vibrations: active control and passive damping. This study
examines the system properties following application of active damping to the
RSA using velocity feedback and also following application of both passive and
active damping in an integrated methodology. A summary of the methodology is
given in Reference 4.

The RSA is a symmetric structure, facilitating uncoupled control systems for
pitch and roll-yaw motions. This study considered only symmetric (pitch)
dynamics, and damping design was only considered for modes which degrade slew
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performance for this axis. The methodology and results would be similar if

roll-yaw dynamics were considered.

RSA Configuration and Performance Measure

The RSA consists of seven substructures, each with a specific function to
perform to meet mission goals. Table 1 contains a description of the
various components and future systems to which these substructures are
traceable. The sizes of components can be considered representative of a
typical spacecraft. Weight and stress constraints were not considered, but
strain energy distributions were adjusted to produce a reasonably weight
efficient design while accommodating passive damping treatments.

Table 1 - RSA Component Overview

DIMENSION MASS APPLICABLE
COMPONENT (m) (kg) FUNCTION SYSTEMS

1) Box 20x20x2.5 2295 Primary reflecting Space Based Radar
Truss surface support Large Earth

and/or spacecraft Observing System
subsystem carrier Mobile Communications

Satellite
Space Station

2) Ring Diameter: 1113 Central support hub: Generic Truss
Truss 22.4 ties system Structure

component together

3) Tripod Diameter 840 Secondary reflecting Space Based Laser
of Base: 20 surface support Large Deployable
Height: 20 Reflector

4) Equip. Length: 10 2634 Support/isolate Space Station
Platform sensitive equipment Strategic Defense

or experiments away Initiative (SDI)
from main structure

5) Antenna Diameter: 5 345 Earth communications: Space Base Radar
command and control Space Station

Satellites

6, Solar Length: 20 786 Power generation, Space Based Radar
7) Arrays sized for 20 kW Space Station

Satellites
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A Cassegrain optical system is contained in the baseline RSA design,
consisting of reflecting surfaces located on box truss and tripod
structures. Of primary interest to the overall performance of this system
is the instantaneous pointing angle of the optical system or line-of-sight
(LOS). The mathematical definition of the LOS is given in Figure 2. The
LOS is written relative to the rotation of a reference sensor in this
definition.

RSA Performance Goal and Attitude Control System

The major disturbance source for the RSA was assumed to be a maneuvering of
the vehicle in order to repoint the optical system. The torques necessary
to slew the spacecraft were generated by an attitude control system using
four torque wheels mounted on the structure. The design of the attitude
control was concieved to be simple but characteristic of those which will be
used on first generation LSS. The attitude control system is discussed in
detail in Reference 2. The disturbance source considered was a small angle
slew (0.01 rad) generated by the attitude control.

The attitude control system uses angular rate and position feedback to
eliminate pointing errors relative to a target angle. The control design
consisted of selecting feedback gains and filter characteristics to achieve
acceptable closed-loop slew performance which while minimizing structural
vibration and remaining within slew acceleration limits. These parameters
for the control system are included on Figure 3, along with the attitude
control actuator locations and a block diagram. The resulting closed-loop
rigid body frequency and damping were approximately 0.50 Hz and 0.707,
respectively.

The baseline system also included an actuator to control the secondary
mirror angle which was gimballed from its support structure on the tripod.
Feedback gains were selected such that the closed-loop frequency and damping
of the mode consisting of rotation of the secondary mirror on its support
were 0.50 Hz and 0.707, respectively. These gains produced acceptable
response of the mirror for slew maneuvering While uncoupling mirror rotation
from higher frequency disturbances.

The figure of merit utilized for evaluation of the system's performance for
the slew maneuver was settling time. This is a measure of the time required
for the system to return to a state where it may operate satisfactorilk
following the transient disturbance. For spacecraft slew maneuvers,
typically a maximum angular acceleration is available (or allowable) and
fast settling time following conclusion of the maneuver is the goal. For
.he RSA, 0.1 rad/sec2 was considered as the angular acceleration limit. The
goal under for the slew maneuver was to settle within 1.0 second of maneuver
completion to below a 50 micro-rad error to target. A summary of the slew
maneuver and performance goals are included in Table 2.
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Figure2 - LOS Mathematical Definition

Table 2 - RSA Performance Goals for Slew

DISTURBANCE DISTURBANCE VALUES GOAL FOR PERFORMANCE

Spacecraft slew 0.01 rad slew with Pointing error settle to
maneuver 0.1 rad/sec2 maximum within 50/Arad within

angular acceleration 1 sec of slew completion
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where:

Ty = attitude control torque
(1/4 of this applied at each control point)

y = pitch target angle error at reference sensor
.y= filtered angle error signal

y= filtered angle error signal rate

Figure 3 Attitude Control System Block Diagram
and Torque Wheel Locations
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RSA Baseline Model

Analysis of the RSA system required a model of the structure and associated
hardware. Passive damping analysis required a relatively detailed finite
element model to allow subsequent Modal Strain Energy (MSE) distribution
calculations. The finite element modeling and analysis was performed using
the MSC/NASTRAN program.

Component mode synthesis was used to compute the frequencies, mode shapes
and strain energy distribution of the RSA model. A total of 210 system
modes were found to be present in the frequency range of interest (0-10 Hz).
Many of these modes involve local solar array motion at very low
frequencies. System modes which are global in character are likely to be
important in attitude control and performance evaluation. A relatively high
number of RSA system modes are global; that is, several components possess
significant kinetic and potential (strain) energy in a given system mode.
This characteristic of the RSA, and future LSS, will complicate the control
design process.

Candidate passive damping treatments and member sets to be damped were
selected during the modeling process, and these are given in Table 3. The
final member sizes are such that high strain energy is contained in the
selected member sets for global system modes. From the strain energy
distributions in these global modes it was apparent that modes with high box
truss participation possessed a high percentage of strain energy in the
diagonals. Similarly, modes with high tripod participation had high energy
in the tripod legs. These distributions allowed for the efficient
application of passive damping treatments to damp these important global
modes.

Table 3 - Selected Component Damping Treatment Types

COMPONENT POSSIBLE TREATMENTS

Box Truss Extensional shear damper
with static load capability (diagonals)

Ring Truss None

Tripod Constrained layer treatment (legs)

Equipment Extensional shear damper (diagonals)
Platform

Antenna Constrained layer treatment (legs)

Solar Arrays Constrained layer treatment (blanket hinge lines)
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Baseline Structural Performance

In order to determine the performance of the baseline system and also modes
requiring passive or active damping, a slew maneuver of the system was
simulated. The modes which could couple significantly with the attitude
control were selected for use in the analysis, as were flexible modes which
were important for LOS analysis. The modal LOS was calculated using the
definition of the LOS and the values of the translations and rotations of
the appropriate points in the mode shapes.

Closed-loop poles for the flexible system coupled to the previously
described control system were calculated assuming 0.2% modal viscous damping
(a damping level characteristic of precision large space structures), and
including 25 flexible modes. Table 4 lists the natural frequencies and
damping ratios of the baseline closed-loop system including these modes.
The effects of truncation were examined, and these modes were determined to
be a sufficient set to characterize spillover and coupling between the
attitude control system while providing accurate LOS simulation.

Because the closed loop system was unstable, the open-loop damping levels of
those modes which were driven unstable (modes 129,158, and 201) were
increased to a level such that the closed loop damping of these modes was
the nominal value of 0.2%. This system was used to compute the nominal
performance. The slew response of the stabilized closed loop system for a
pitch axis maneuver was generated and is given in Figure 4. Notice that the
response involves several modes and has a lengthy settling time. The time
to complete the slew maneuver if the RSA were a rigid body is approximately
3.25 seconds. After 1.0 seconds following the rigid body maneuver time, the
baseline system "settles" to within an error of 4.5 x 10-4 radians as shown
in the figure. This exceeds the goal level of 50 micro-radians by a factor
of 10. The time required for this system to settle to the 50 micro-radian
level is approximately 230 seconds.

Required Damping and Achievable Passive Damping Estimates

The damping levels required to meet the design goals for the slew maneuver
may be selected in many different ways, which will in general result in
damping the various modes to differing levels. For this study, damping
levels based on modal settling times were used.

In order to calculate the required damping ratios for each mode, the LOS
response of the system was decomposed into its various modal contributions.
The settling time for the individual modes was taken to be the time required
for the amplitude of the modal response to fall below the error bound of 50
micro-radians. As a preliminary step in determining the required damping
levels, the attitude control torque as a function of time for a rigid RSA
was generated and applied to the open loop RSA. Similarly, modal settling
times were calculated for the nominal system with the attitude control loop
closed. Table 5 contains a list of the modes with individual settling times
greater than the settling time of 1.0 sec for these two cases.
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Table 4 Natural Frequencies and Damping Values for
Nominal System With Attitude Control Loop Closed

OPEN LOOP CLOSED LOOP
SYSTEM f f f

n

MODE # (Hz) (%) (Hz) ()

Rigid Body 0 0 0.46 60.1
Filter 1.0 70.7 0.54 81.3

7 0.01 0.2 0.50 70.7
21 0.69 0.65 0.22
23 0.73 0.77 1.72
30 1.02 0.96 1.45
32 1.02 1.02 0.20
44 1.50 1.49 0.62
48 1.53 1.51 0.75
118 2.72 2.72 0.20
124 2.78 2.78 0.45
129 2.86 2.87 -0.15
158 4.03 4.04 -0.05
165 4.21 4.22 0.17
176 4.38 4.38 0.20
182 4.55 4.55 0.16
185 5.11 5.12 0.08
187 5.68 5.68 0.16
188 5.81 5.81 0.20
191 6.45 6.45 0.10
192 6.49 6.49 0.20
196 6.96 6.96 0.18
198 7.L5 7.15 0.18
199 7.31 7.31 0.15
201 7.38 7.38 -0.10
206 8.77 8.77 0.02
209 9.53 0.2 9.53 0.02
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Table 5 - Modes with High Settling Time
for Baseline System

SYSTEM SETTLING TIME FOR SETTLING TIME FOR STABILIZED
MODE RIGID RSA TORQUE BASELINE CLOSED-LOOP SYSTEM
NO. (sec) (sec)

30 357 244
23 326 174
32 171 84

124 84 73
129 75 68
158 48 49
185 24 26
201 20 24
209 11 14
48 7 5
21 6 0

191 5 3
187 5 4
199 3 8
206 2 3

To find preliminary damping levels for each individual mode, the damping
levels were determined so that each mode settle to within the 50
micro-radians minus a margin to allow for the addition of other modal
responses at their corresponding phase angles. The modal damping values
which caused the individual modes to meet the settling criterion value were
calculated by iteration.

Because the responses of modes which are controllable and observable by the
attitude control alter the control torque, the response of any mode was
dependent on the damping of all other modes. To include these effects, the
attitude control system was coupled to the flexible system using the damping
levels selected as explained previously. The damping levels were then
iteratively adjusted such that the closed-loop modal settling times were
equal for all modes requiring damping augmentation, and the system response
just met the performance goals.

The required damping levels for the targeted modes based on the above
criterion are included in Table 6. Notice that there are two low frequency
modes (modes 23 and 30) which are within the controller bandwidth that
require high damping levels, and many modes which require low levels of
damping augmentation. The modes which require high damping augmentation and
have high modal settling times are the system target modes (modes 23, 30,
32, 124, 129, 158, 185, 201, and 209). These modes were specifically
targeted for damping augmentation. Modes which require only low damping
levels can be considered the observable modes. Most of these modes do not
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Table 6 - Modal Damping Levels Selected for Modes

with High Settling Time

Mode No. Freq. (Hz) Req'd. (%)

23 0.73 11.0
30 1.02 12.0
32 1.03 3.0
48 1.53 1.0
124 2.8 4.0
129 2.9 4.0
158 4.0 2.5
165 4.2 1.0
182 4.5 1.0
185 5.1 2.0
187 5.7 1.0
191 6.5 1.0
196 7.0 1.0
198 7.1 0.5
199 7.3 0.5
201 7.4 1.5
206 8.8 1.0
209 9.4 1.5

have settling values above the goal, but their responses are large enough
when undamped that they can add with the targets to produce a slew response
which does not meet the goal. The damping levels given in Table 6 imply
that passive damping could greatly benefit the system, as only low to
moderate levels of damping are required for a majority of the system modes.

The passive damping which may be designed into the structure using the
treatments on Table 3 can be found using the modal strain energy method. In
order to facilitate estimates, the modal strain energy method was utilized
in the form:

nms
nj F n, * %SE, *DEF,

i=l

where:

ni = modal loss factor for jth mode
%SEij = % strain energy in ith set of damped members in

jth mode
DEFi = Assumed damping efficiency factor of ith set of

damped members. Defined as the ratio of strain
energy in viscoelastic used in treating the member
to total member energy.

nms = # of damped member sets
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Representative damping efficiencies based on the treatment types, and
experience using similar treatments on the PACOSS Dynamic Test Article (DTA)
were used in the estimates (Reference 4). The DTA is a scale model of the
RSA.

The calculated damping of the target modes based on assumed damping
efficiencies and the modal strain energy distribution using these treatments
was calculated assuming a viscoelastic loss factor of 0.7, which roughly
corresponds to the value of the loss factor for acrylic foam tape at 1.0 Hz
and 70 F. The damping attributable to treatment of the various components
is given in Table 7, along with the maximum achievable damping using these
treatments.

Notice that the required damping for all target modes may be obtained using
the selected treatments except for system modes 23 and 30. This table shows
that by applying treatments to damp the low frequency target modes,
significant damping can be achieved in the higher frequency targets and
observable modes. This "passive damping spillover" is an attractive benefit
found in passive damping design.

Table 7 - Maximum Achievable Damping from Treatments by Component

Achievable Modal Damping
(W

Equipment Solar
Req'd. Mode Freq. Box Truss Tripod Platform Antenna Array
(M) No. (Hz) Diagonals Legs Diagonals Legs Hinges Total

11.0 23 0.73 - 0.3 0.6 2.5 0.2 3.6
12.0 30 1 02 - 0.? 3.3 1.2 1.1 5.8
3.0 32 1.03 - - 1.1 0.3 3.5 4.9
1.0 48 1.53 - 0.7 2.7 0.4 0.4 4.2
4.0 124 2.8 1.9 3.6 - 0.13 - 5.6
4.0 129 2.9 22.7 0.13 0.14 - - 23.0
2.5 158 4.0 3.0 1.1 - 0.4 - 4.5
1.0 165 4.2 0.53 3.6 - 0.13 - 4.3
1.0 182 4.5 1.1 4.1 - - - 5.2
2.0 185 5.1 3.1 0.09 - 1.2 - 4.4
1.0 187 5.7 9.2 1.5 - 0.53 - 11.2
1.0 191 6.5 1.7 0.11 12.3 0.43 - 14.5
1.0 196 7.0 23.7 0.19 0.42 - - 24.3
0.5 198 7.1 18.4 0.83 - 0.21 - 19.4
0.5 199 7.3 20.3 0.14 1.3 - - 21.7
1.5 201 7.4 7.6 0.39 2.9 0.22 - 11.1
1.0 206 8.8 11.6 1.5 0.42 0.21 - 13.7
1.5 209 9.4 25.8 0.04 0.22 - - 26.1
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Control System Evaluation for Various Passive Levels

With the required modal damping levels known, a trade was examined between
actively and passively achieving these levels. This trade allowed a
reasonable selection of the mix of the two damping approaches based on the
power requirements for the actuators and relative ease with which the
required level of passive or active control could be incorporated.

In order to determine the effect of the passive and active damping levels on
the system, an active control system was designed for various percentages of
the maximum achievable passive damping levels given in Table 7. For
example, a passive level of 50% achievable damping may be selected; this
corresponds to using damping values of one-half those in the final column of
Table 7. An active control system was then designed which augmented the
target mode damping levels to the required levels. As the active and
passive damping add approximately linearly for the levels of damping
considered, the active damping was simply the difference between the
required and passive damping levels. Eleven cases were considered, with
percentages of achievable damping ranging from 0% to 100% by steps of 10%.

The active control algorithm implemented in each case was a form of modal
space control using colocated sensors and actuators. The use of velocity
feedback with colocated sensors and actuators gives an unconditionally
stable system (assuming ideal sensors and actuators). However, observation
and control spillover effects can seriously degrade closed-loop performance.
In order to avoid spillover into the rigid body mode, the algorithm was cast
such that only relative velocities were sensed and the sensor signal was the
relative angular velocity between each vibration control sensor point and
the reference attitude control sensor located on the ring truss. A torque
was applied at the attitude control system reference point which exactly
negated the torques applied at the vibration control points, so that zero
net torque was applied to the system. The feedback gain matrix is thus
given by:

K = - _T [2CJ OT

where Oc is the relative open-loop modal matrix and [2rwc] is the desired
diagonal active modal damping matrix for the controlled modes. Note that
there must be as many sensor/actuator pairs as controlled modes in this
approach.

Efficient sensor/actuator pair locations were selected through consideration
of over 300 candidate locations, and the points making the determinant of
the Oc matrix a maximum for the modes requiring damping were selected in
each case.

The active control was then implemented through the following relation:

uc = K yrel

and the closed-loop system was generated using the state-space form of the
flexible RSA.
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For no passive damping augmentation, active control of the nine target modes
was required. These modes were selected for active control since they
require the highest damping, and when considered separately each had a LOS
settling time which violated the performance goal. Actuator gains were
determined, and the closed-loop system poles were calculated. Due to
spillover the required damping was not achieved using the results of the
first gain calculation, so the damping levels used in the gain calculations
were iteratively adjusted to achieve closed-loop damping equal to the
desired level in each controlled mode. The actuator locations selected to
control these modes are identified in Figure 5. Actuators which are in
symmetric pairs were considered a single actuator in the gain calculation,
since only symmetric modes were considered in the analysis.

Table 8 contains the closed-loop frequencies and damping of the actively
controlled system without passive damping augmentation. Notice that
spillover effects due to those modes which were not considered in the gain
calculation resulted in increased damping in those modes which were not
targeted for active control.

CP3

CP8A

CP9CP CP2

Figure 5 - Sensor/Actuator Locations for Moda] Control
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Table 8 - Closed-Loop Frequencies and Damping of Controlled
System Without Passive Damping

OPEN LOOP CLOSED LOOP
SYSTEM fn f

n
MODE # (Hz) (M) (Hz) (W

Rigid Body 0 0 0.46 51.3
Filter 1.0 70.7 0.50 93.5

7 0.01 0.2 0.50 70.61
21 0.69 0.69 0.32

* 23 0.73 0.79 11.64
* 30 1.02 0.96 13.5
* 32 1.02 1.02 0.21

44 1.50 1.50 0.20
48 1.53 Overdamped

118 2.72 2.72 0.23
*124 2.78 2.80 4.3
*129 2.86 2.85 4.0
*158 4.03 4.04 2.73
165 4.21 4.40 2.4
176 4.38 4.37 0.46
182 4.55 4.40 2.4

*185 5.11 5.09 2.0
187 5.68 5.8 3.0
188 5.81 5.81 0.25
191 6.45 Overdamped
192 6.49 6.58 6.35
196 6.96 6.96 1.52
198 7.15 7.26 0.77
199 7.31 7.44 0.77

*201 7.38 7.36 1.6
206 8.77 Overdaped
*209 9.53 0.2 9.53 1.63

*Denotes active control target mode

System mode 32, which is a mode involving torsion of the solar array blanket
out of phase with motion of the main structure, requires damping but was
nearly uncontrollable using reasonable actuator locations. Even though high
damping levels were used for this mode in the gain calculation, the required
closed-loop damping could not be achieved due to spillover. To actively
damp this mode effectively would require actuators located on the flexible
and lightweight solar array blankets. It was found that by using 6.0%
active damping in the gain calculation for mode 32, the performance of this
mode was equivalent to the 3.0% passively damped case due to coupling with
other modes. Therefore, when active control of mode 32 was needed, 6.0%
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damping was always used in the gain calculation. The closed-loop damping in
all other modes was adjusted to be above the required level but not greater
than 1.15 the required level. This factor resulted in a reasonable number
of iterations to achieve the gains, while achieving active control damping
levels which were at most slightly higher than necessary.

Increases in the passive damping allowed fewer modes to be actively
controlled. The addition of passive damping also resulted in lower gains to
control the modes which still required active damping. The active system
used in each case was similar to the modal space control previously
described, where the control gains were selected based on the modes still
requiring active augmentation and the required active augmentation levels.
The required number of actuators for each case are given in Table 9.

In order to compare the performance of the controlled systems, the LOS slew
responses of the 11 cases were plotted on the same graph. This is given as
Figure 6. Notice that equivalent closed-loop damping in the targeted modes
results in nearly identical responses.

To allow comparison of the control effort, in each case the closed loop
system was subjected to a slew maneuver of the spacecraft and the energy
which would be required to drive electromechanical actuators was calculated.
Figure 7 shows a graph of the energy required to drive the actuators versus
the percentage of available passive damping in the system. Note that the
energy requirements drop rapidly as the passive damping level increases from
nominal, due to the fewer number sensors and actuators required.

Table 9 Required Number of Actuators for Percentages of
Maximum Achievable Damping

PERCENT OF MAXIMUM NUMBER OF
ACHIEVABLE DAMPING ACTUATORS REQUIRED

0 9
10 9
20 6
30 6
40 5
50 5
60 4
70 3
80 2
90 2

100 2
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Relative Active Control Energy vs. Percent Maximum Passive Oamping
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Figure 7 - Active Control Energy for Percentages of
Achievable Passive Damping

As noted previously, spillover into modes not considered in the gain
calculation affects the performance of the modal space control approach.
This accounts for some of the higher energy requirements of the active
system for low passive levels. For the control system for the undamped
structure, three modes not intended to receive active damping augmentation
were overdamped while several controlled modes did not have damping levels
equal to the required values until the gains were adjusted iteratively.
This can be interpreted a% an inefficient use of control energy in that
control effort is used to control modes of little importance to system
performance. Use of a more sophisticated control algorithm and more sensors
and actuators would reduce the spillover effects, but would be more
sensitive to modeling errors and could lead to instabilities.

Selection of a Mix of Passive and Active Control

Using the results of the previous analyses, a mix of passive and active
damping components was selected. A reasonable selection of the mix of the
active and passive components was made on the basis of Figure 7 and Table 7.

Figure 7 shows a rapid decrease in the power required by the active control

system as the percentage of available passive damping is increased from
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nominal. At approximately 75% of the potential passive damping, the
benefits of lower power requirements for the active system as passive level
increases show diminishing returns. This can be seen by examining the
maximum achievable damping on Table 7, and noting that at 75% of maximum all
modes except 23 and 30 reach their design damping value. At this passive
level, only the two sensor/actuator pairs were required, the control gains
had acceptable values, and achieving the desired passive level would seem to
be a relatively easy task. An important observation is that these damping
levels correspond to achieving at least the target damping levels in all
target modes except 23 and 30 and augmenting the damping of modes 23 and 30
actively.

Passive Damping Treatment Design

The passive damping analysis included design of the discrete damping devices
to be used in the box truss and equipment platform structures; and the
constrained layer treatments for the tripod legs, antenna support legs, and
solar array hinges. The design process also included selection of the
damping member locations for the box truss and equipment platform, and
locations for the constrained layer treatments.

Table 7 shows that very high damping levels may be achieved in several modes
with high box truss participation, damping levels which are not required for
the system to meet the performance goals. The table also shows that the
equipment platform dampers do not contribute damping levels sufficient to
meet the performance goals for modes 23 and 30, but contribute more than
enough damping to damp other modes to the required level. This implies that
neither all the box truss or equipment platform diagonals need be damped.
The number of diagonals selected in these two components were only those
required to meet the design damping levels for the targets other than modes
23 and 30. Similarly, constrained layer treatments were applied only as
required. The goal in subsequent damping design was therefore to achieve
the design levels given in Table 6 for all target modes excluding modes 23
and 30 passively, and then to augment these two modes with an active system
to their selected damping design values.

The designs of the discrete damping devices used on the RSA are very similar
to the designs used used for corresponding elements on the PACOSS DTA. The
extensional shear damper design used for the DTA box truss includes a spring
between two relatively stiff damper support rods, and a section of
viscoelastic wrapped around each rod and connected in parallel with the
spring through a stiff clamshell. The design process for members of this
type is discussed in several Reference 4. This design process was used to
achieve a damper design with a high damping efficiency factor. Damped
member weight was then calculated based on the member dimensions and
materials. The final damper design corresponds to an approximate mass of
0.94 kg versus the original RSA box truss diagonal mass of 0.11 kg. The
design damping efficiency of the box truss damper was 85%.
The locations for the dampers were selected from the strain energy

distributions of the target modes. The number of damping locations was
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selected such that the damping goals in all the target modes with high box
truss participation were achieved with a minimum number of devices. The
number of dampers required for the box truss was 40 members, of a total of
248 diagonals. The total mass of the box truss component was previously
2295 kg. Damping treatments add to this by approximately 1.6%.

The design of the extensional shear dampers for the equipment platform was
very similar to thet used for the box truss. A single shear design was
utilized which does not include the elastic center spring. This design
allows for more weight efficient utilization of the damping material. The
final equipment platform damper design has a mass of 0.079 kg as compared to
the weight of the original diagonal member of 0.018 kg. The damping
efficiency of these members was 90%. A total of 18 dampers were required in
order to achieve the damping attributed to the equipment platform for the
final design damping levels. This corresponds to a negligible increase in
mass of the original equipment platform mass of 2634 kg.

Since the design of constrained layer treatments for the tripod and antenna
legs would be performed using solid elements and plate elements in
MSC/NASTRAN, the actual design and analysis of these treatments was not
performed due to cost and schedule constraints. A refined approximation of
the damping effect and additional weight of the components due to these
treatments was calculated based on the damping efficiency and relative
thicknesses of the viscoelastic materials and constraining layers applied
the DTA tripod legs.

The final dimensions and damping material for the treatment of the DTA
tripod legs was a 0.050 in. thick acrylic core foam layer with a graphite
epoxy constraining layer 0.050 in. thick applied to the legs which had a
wall thickness of 0.065 in. This size relationship was used for the final
estimates of all RSA constrained layer treatment performance. This
treatment had a damping efficiency factor of approximately 17%. It should
be noted that this design was in no way optimized on the DTA, so that the
same damping efficiency mai be achievable with lower relative VEM and
constraining layer thicknesses.

Review of the strain energy distribution in the RSA tripod indicated that it
was not necessary to damp the full length of the tripod legs. The major
portion of the tripod leg strain energy was located toward the tripod apex
in modes with significant tripod participation. This allowed only the upper
three-fifths of the tripod legs to be treated in order to meet the target
damping levels for these modes.

Similarly, the strain energy distribution in modes with antenna
participation showed that only half of each antenna leg (half toward ring
truss) required a constrained layer treatment. It was also determined that
all the solar array hinges required treatment.

The final passive damping ratios of the RSA were calculated using the strain
energy distribution for the treated elements in the final design (Table 10),
the design damping efficiencies (Table 11), and the value for the loss
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factor of acrylic core foam tape at 1.0 Hz and 70*F (0.73). This leads to
final passive damping levels as given in Table 3-12.

To estimate the additional mass due to the constrained layer treatments,
each treatment was considered to have the relationship that the constraining
layer and viscoelastic material were each 77% as thick as the wall of the
structural member to be treated, as in the DTA tripod design. Using this
relationship and the densities of the structural and viscoelastic material,
the added mass due to the constrained layer treatments was then calculated.

Table 13 contains a comparison of the system mass properties prior to the
passive damping treatment application, and the estimated mass properties of
the structure including damping treatments. Notice that the mass of the
damping treatments is only a small percentage of the total system mass. A
further benefit of the constrained layer damping treatments should be noted,
however. Application of constrained layer treatments typically stiffens the
structure, thereby increasing the system natural frequencies and lowering
response levels. If identical natural frequencies were desireable, less
added weight would be required for these treatments.

Table 10 - Strain Energy Percentages in Treated Elements for Final Design

Percent Strain Energy in Treatments

All
40 3/5 of 18 1/2 Solar

Mode Freq. Box Truss Tripod Equip Plat Antenna Array
No. (Hz) Diagonals Legs Diagonals Legs Hinges

23 0.73 - 2.37 1.03 45.9 3.46
30 1.02 - 1.43 5.32 22.7 20.7
32 1.03 - - 1.73 5.17 66.5
48 1.53 - 6.01 4.06 7.12 7.74
124 2.8 5.62 59.9 - 2.24 0.6
129 2.9 57.1 2.34 0.08 - -

158 4.0 7.25 17.4 - 3.86
165 4.2 1.09 56.7 - 1.33
182 4.5 3.19 52.2 - - -

185 5.1 7.96 1.77 - 12.6 -

187 5.7 20.6 19.7 - 1.29 -

191 6.5 1.88 1.30 30.4 4.77 -
196 7.0 47.5 2.65 1.10 - -
198 7.1 26.9 11.8 - 3.02 -

199 7.3 18.0 2.0 - - -

201 7.4 8.60 48.3 8.01 1.51 -

206 8.8 31.5 24.0 1.17 2.78 -

209 9.4 34.4 - - -
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Table 11 - Damping Efficiencies for Final Passive Damping Calculations

BOX TREATED EQUIPMENT TREATED TREATED
TRUSS TRIPOD PLATFORM ANTENNA SOLAR ARRAY

DAMPERS LEGS DIAGONALS LEGS HINGES

0.85 0.17 0.90 0.17 0.15

Table 12 - Damping Attributable to Component Treatments in Final Design

Percent Modal Damping Attributable to Treatments

All
40 3/5 of 18 1/2 Solar

Req'd. Mode Freq. Box Truss Tripod Equip Plat Antenna Array
(W No. (Hz) Diagonals Legs Diagonals Legs Hinges Total

11.0 23 0.73 - 0.15 0.34 2.85 0.19 3.5
12.0 30 1.02 - 0.09 1.75 1.41 1.13 4.4
3.0 32 1.03 - - 0.57 0.32 3.64 4.5
1.0 48 1.53 - 0.37 1.33 0.44 0.42 2.6
4.0 124 2.8 1.74 3.72 - 0.14 0.13 5.7
4.0 129 2.9 17.7 0.15 0.03 - - 17.9
2.5 158 4.0 2.25 1.08 - 0.24 - 3.6
1.0 165 4.2 1.28 3.52 - 0.08 - 4.9
1.0 182 4.5 0.99 3.24 .- - 4.2
2.0 185 -.1 2.47 0.11 - 0.78 - 3.4
1.0 187 5.7 6.39 1.22 - 0.08 - 7.7
1.0 191 6.5 0.58 0.08 9.99 0 30 - 11.0
1.0 196 7.0 14.7 0.16 0.36 - - 15.2
0.5 198 7.1 8.35 0.73 - 0.19 - 9.3
0.5 199 7.3 5.58 0.12 - - - 5.7
1.5 201 7.4 2.67 3.00 2.63 0.09 - 8.4
1.0 206 8.8 9.77 1.49 0.38 0.17 - 11.8
1.5 209 9.4 10.7 - - - - 10.7
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Table 13 - Estimated Mass Change Due to Damping Treatments

CHANGE DUE TO
ORIGINAL MASS TREATMENT MASS % COMPONENT MASS

SUBSTRUCTURE (kg) (kg) CHANGE

Box Truss 2295 35.9 1.56
Ring Truss 1113 - -

Tripod 840 227 27.0
Equipment Platform 2634 1.10 0.0
Antenna 345 71 21.0
Solar Arrays 786 13.2 1.68

SYSTEM 8013 348 4.3

The active control algorithm was used to provide additional damping to modes
23 and 30 for the final passive design. The final open and closed loop
frequencies and damping ratios for the passive/active RSA design are listed
in Table 14. This table shows that although spillover effects were present
for the passively damped system, they are far less severe than observed with
only nominal passive damping. Notice that the required damping ratios with
a 1.5 factor of safety have been achieved by passive damping in the modes
which were the original targets; excluding modes 23 and 30 which have their
target levels achieved through a combination of passive and active damping.

Table 15 contains a summary of the mass properties of several candidate
actuators which could be used for the active control system. For the
active-alone system, the maximum torques required from the actuators during
the slew maneuver were calculated and are included in Table 16. Notice that
high torques are required of several actuators. Selecting the actuators
which can nroduce the required torques and have minimum mass, the additional
system mass due to the actuators is given in Table 17. Actuators which are
in symmetric pairs were given the mass properties of a single actuator, but
the actual implementation is two actuators each producing one half the
torque on Table 16. The inclusion of only one actuator mass assumes that
there exists actuators of one half the mass of the Bendix MA 500 actuators
which can produce one half the torque.

The actuator data indicates that in order to achieve the necessary active
control authority for the active-alone system, two Sperry 600 actuators and
seven Bendix MA 500 actuators were needed. The mass associated with this
hardware has a total of 620 kg. The maximum torques required for the two
actuators in the passive/active system were also calculated and are included
in Table 18. The passive/active system would therefore require two Bendix
MA 500 actuators along with the passive damping treatments.
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Table 14 - Open and Closed-Loop Frequencies and
Damping for Final Passive/Active System

OPEN LOOP CLOSED LOOP
SYSTEM f n f $

nn
MODE * (Hz) (W) (Hz) (W

Rigid Body 0 0 0.45 59.7
Filter 1.0 70.7 0.55 82.7

7 0.01 0.2 0.50 70.63
21 0.69 0.2 0.69 0.33

* 23 0.73 3.5 0.80 11.63
* 30 1.02 4.4 0.96 13.70

32 1.02 4.5 1.02 4.52
44 1.50 0.2 1.50 0.53
48 1.53 2.6 1.56 14.29
118 2.72 0.2 2.72 0.21
124 2.78 5.7 2.78 6.57
129 2.86 17.9 2.88 18.45
158 4.03 3.6 4.05 4.71
165 4.21 4.9 4.21 5.40
176 4.38 0.2 4.38 0.21
182 4.55 4.2 4.55 4.26
185 5.11 3.4 5.13 7.30
187 5.68 7.7 5.67 8.41
188 5.81 0.2 5.81 0.23
191 6.45 11.0 6.11 81.41
192 6.49 0.2 6.45 4.30
196 6.96 15.2 6.95 15.14
198 7.15 9.3 7.14 9.56
199 7.31 5.7 7.28 6.00
201 7.38 8.4 7.32 8.14
206 8.77 11.8 8.75 12.46
209 9.53 10.7 9.53 10.71

*Denotes active control target mode

KCD- 25



Table 15 - Control Moment Gyro Characteristics

Angular
artomonlum Torque (lnt

Mif IModel No. Tlpe N.n.. Iibt.5I (.1mm) (N.m) (lob)In) _I .sige Slalu, ApplIcations

Ben.. VA 5.100-1 0ooe 87.8 5 8.000 135.8 100 38 0 dia X 10 Lab prototype LAPSO poinler
peOIOlype

Bend.. MA 500 AC Single 399. 250. 7.850 678 500 145 20 dia X 32 Expenenlll

1.017 750

Bend.. MA 500 DC Single 399. 250- 7.850 678 500 155 20 dig x 32

1.01 750

Bond,. MA 1000 Oouble 1.356 1.000 11.400 237.3 175 230 39 dig sohv Experimental NASA - Langley

Bend. MA 2300 Double 3.119 2.300 9.000 165.4 122 418 49 dia Spv Skylab

end,4. MA 2000 Doble 1.356. 1.000. 4.000. 237 3 17 558 44 dig sohr AdvanCOd

4.068 3.000 12.000 dqvybOomOnl

Skylab unit

Sperry 30 Douie 40 7 30 4.750 6.8 5 lo
k)  

32 22 dia X 12 Prod COMSATITRW

Sperry 75 Double 102 75 4.000 30 2.2 101 48 20 dia X 10 Prod COMSAT

Sow'y 100 Single, double 136 too 8.000 48 Exsermental

Sperry SO Single 203 I SOunit

Sotar 400 Single 400

Soery 600 Single 876. 500. 3.000. 1.358 1.000 175 31 X 41 X

1.356 1.000 6.000 33

Soerr 1200 Single 813. 600. 2.810" 2.?12 2.000 200 31 X 41 X

2.712 2.000 6.700 23

Sperry 4500 Dot#. 6.101 4.500 6,500 200 500 48 X 48 dia E.permonlhai NASA - Langley
(Space Slat-on

nos)

Rot: iSDL.R-1499. An Investigatolln of Enabling Technologies for Lairge Precilion Spae Systems. September 1982. Vol 3. A 3383.43

Sirunce. V. al.

Table 16 - Maximum Torques Required from
Actuators Using Active Control Alone

MAXIMUM TORQUE
ACTUATOR # (N-m)

1 936
2 1371
3 633
,1 520

5 261

6 226
7 212
8 475
9 106
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Table 17 - Actuator Types Selected for Active Control

Alone System and Associated Mass Properties

ACTUATOR # ACTUATOR TYPE MASS (kg)

1 Sperry 600 79.5
2 Sperry 600 79.5
3 Bendix MA 500 DC 65.9
4 Bendix MA 500 DC 65.9
5 Bendix MA 500 DC 65.9
6 Bendix MA 500 DC 65.9
7 Bendix MA 500 DC 65.9
8 Bendix MA 500 DC 65.9
9 Bendix MA 500 DC 65.9

TOTAL 620.3

Table 18 - Maximum Torques Required from
Actuators for Passive/Active Design

MAXIMUM TORQUE
ACTUATOR # (N-m)

1 167
2 136

Table 19 - Mass Properties Associated with Damping
Devices in Passive/Active Final Design

DESCRIPTION MASS (kg)

Passive Treatments 348
Actuator 1 (Bendix MA 500 DC) 65.9
Actuator 2 (Bendix MA 500 DC) 65.9

TOTAL 479.8
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The total mass associated with passive and active control damping devices
for the passive/active system would then be 480 kg as shown in Table 19.
The additional mass of the passive/active system is 140 kg less than the
mass associated with the actuators for the active control alone design.
This mass comparison does not include any additional weight which may be
required to eliminate outgassing or control temperature of the viscoelastic
for the passive damping treatments, but these will most likely be small
compared to the 140 kg difference between the two designs. The active
control added mass estimate includes only actuator masses and not any
additional mass for electronics required to operate the control system, or
additional power or fuel needs.

The energy requirements of the active and passive/active systems can be
compared by examination of Figure 7. The relative electrical energy
required to drive the actuators for the passive/active system is less than
3.0% of that required for the active-alone system (this roughly corresponds
to 75% maximum achievable damping on Figure 7). The actual comparison
calculated from the slew maneuver of the final damped design is 2.6%. The
passive/active system therefore has much lower requirements for a power
source to drive the actuators. Of course, energy required for temperature
control of the passive damping treatments, if necessary, should also be
included in this comparison. Proper insulation and shielding of the
treatments would probably make this power negligible.

It should be noted that in the previous comparison, the assumptions are
biased in favor of the active components in the calculations. A damping
factor of safety was used for the passive damping component in the final
design, as the passive damping in the target and observable modes for the
final design was at least 50% above the required value in each case. The
active control damping component was allowed to achieve only slightly higher
than the required damping levels in the target modes, although significant
damping was obtained in several observable modes due to spillover. No
factors of safety or gain margins were considered in the active control
design.

The mass comparison of the two designs included only the mass of the
actuators used for active control, while the larger power requirements of
the active-alone system would surely result in a more massive power supply.
Any additional wiring required for the larger number of sensors and
actuators should also be included in the mass calculations, but was not.
Also, control system electronics and redundant components which would be
required for the active system were not included in the mass calculations.

Perhaps the largest effects not accounted for in the comparison were the
effects on the modal parameters of the addition of the actuators and passive
damping treatments. While the effects of the discrete box truss and
equipment platform dampers on mode shapes and frequencies would be small,
the addition of the constrained layer treatments to the tripod, antenna, and
solar arrays would result in higher frequencies for the target modes since
the structure would be stiffened in locations which have high strain energy
in these modes. Alternatively, the addition of the large masses of the
actuators at points of high modal deflections in the target modes (such as
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at the equipment platform or antenna tips) would result in much lower
frequencies since these masses would then have high generalized mass
contributions. These effects would result in increased damping requirements
for the active-alone system and decreased damping requirements for the
passive/active system.

Conclusions

From the comparison of the active-alone system and the passive/active
system, and the results of the RSA study, several conclusions
may be drawn. These are:

1) Passive damping and/or active control will provide dramatic improvement
in the performance of future space systems. For the RSA, a factor of 230
improvement in settling time after the slew maneuver was achieved.

2) Passive damping will be required for efficient implementation of
vibration control technology on future space systems.

3) The passive/active RSA vibration control system, as compared to the
active-alone RSA system, has much lower power requirements, higher
reliability, lower active control system gains, and fewer electronic
components.

4) Lower weight for overall systems will result from consideration of
passive and active control together in an integrated damping methodology.

5) The fewer number of electronic components, lower overall weight and lower
system power requirements of the passive/active system compared to the
active-alone system are indicative of lower overall system costs.
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A Damping Treatment for Resonant Test Fixtures I

F. Cericola, J. D. Rogers, and D. J. Segalman
Sandia National Laboratories

Albuquerque, New Mexico 87185
(505) 846-3633

Abstract

The application of a synthetic putty as a vibration damping treatment has been inves-
tigated. The putty was applied to rod specimens of several lengths to obtain frequency
characteristics of the treatment. Test results were compared with analyses for the
various rod lengths and putty shapes.

Up to 1% damping was achieved with various combinations of viscoelastic plug and
elastic rod. The analytic method, though simplistic, did provide guidance to interpret-
ing the results. The analytic method and the experiments, together, established the
inertial nature of the dissipative mechanism.

'This work was supported by Sandia National Laboratories under contract to the U.S.
Department of Energy (DE-AC04-76DP00789).
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1. Introduction

A common problem in vibration testing is the control of a test through a resonant
test fixture. If the resonant mode of the test fixture is lightly damped, the control of
the test near this frequency is difficult, if not impossible. Thus, methods for moving
modal frequencies out of the test bandwidth or sufficiently damping these modes are
of great interest to the test engineer. In m.ny cases, it is not possible to remove the
fixture resonances from the frequency bandwidth of the test, so one must attempt to
damp the fixture sufficiently to allow control.through the resonances.

One method for adding damping to a fixture is to apply a viscoelastic material to
the surface of the fixture. The mechanical energy transmitted from the fixture to the
viscoelLstic material is partially dissipated, thus increasing the damping of the fixture.

In the current work, the effect of applying a synthetic putty to the surface of a
rod specimen was considered. Aluminum rod specimens of varying lenghs were used
to obtain frequency dependent characteristics of the damping treatment. The rods
had a plug of the putty attached to one end and were impacted at the other end with
an instrumented hammer. The damping was identified by the logarithmic decrement
from an attached accelerometer and by a modal curve fit. The plugs of putty were
applied in two shapes to investigate shape effects and two volumes to investigate volume
effects. Viscoelastic properties of the putty were obtained from rheological tests, and
a computer code was written to predict the damping for the various plug shapes.

The damping material selected for this investigation was Scotch Seal 1279, a syn-
thetic putty designed for use in sealing environmental test chambers. The damping
properties of this material were not available from the manufacturer so tests were per-
formed in the rheology laboratory at Sandia Nat;~.di Laboratories to Uvi Lain the master
curve shown in Fig. 1. The complex elastic modulus was deduced from the shear stor-
age and loss moduli, recognizing that the material was above its glass-transition at all
frequencies. It is clear from the figure that the material's characteristics are a strong
function of frequency. Under static loading, the elastic modulus becomes quite small
and the material is soft, pliable, and "sticky" to the touch. This is not surprising since
it was designed to seal environmental chambers. The frequency range of interest in
this work, however, was the range from 2000 Hz to 4000 Hz. In this range, the material
has an elastic modulus about one one-thousandth that of aluminum.
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2. Discussion of Testing

The tests performed in this work utilized aluminum rod specimens varying from
24 to 48 inches in length, each rod with a 0.75 inch diameter. To these rods wcre
added four different "plugs" of the synthetic putty. The plugs were of two masses, 6
grams and 19.1 grams, and two shapes, cylindrical and conical. The putty plugs were
attached to one end of each rod and the rod was then struck at the other end with an
instrumented hammer. The input force and the resulting acceleration of the rod were
measured using piezoelectric transducers on the hammer and rod respectively. The
test configuration is shown in Fig. 2.

The natural frequency and damping ratio were obtained from a modal analysis
complex exponential curve fit. The damping ratio was also obtained from the logarith-
mic decrement technique applied to the measured accelerometer response. The values
of the damping ratio obtained in these two manners compared quite well in all cases.
The natural frequencies and damping ratios are given in Table 1.

The thrust of this work was to investigate the effect of adding synthetic putty on
the damping of the aluminum rods so the natural frequency information appears to
be superfluous. However, the natural frequency data provided a method for gaining
an understanding of the physical mechanisms present. The initial assumption is that
the putty will act as a lossy mass, i.e., a mass and damper combination. However,
when Table 1 and Fig. 3 are considered this model is clearly not reasonable. The data
show that the rods with 6 grams of putty added had lower natural frequencies than
those with 19.1 grams of putty added. This result is not consistent with the lossy mass
model, since by that model, increasing the mass should decrease the natural frequency.

If the putty plug is modeled as a spring-mass addition to the rod, the effective
end condition on the rod is either mass-like or spring-like depending upon the natural
frequencies of the rod and spring-mass system, as shown by Snowdon [5]. For example,
if the natural frequency of the rod is much less than that of the spring-mass system
then the end condition is mass-like. This concept extends to considering the plug
as a viscoelastic addition to the aluminum rod. To gain some understanding of this,
the cylindrical plugs were considered as elastic rods attached to the aluminum rods.
The eiastic properties were obtained from Fig. 1. The natural frequencies obtained
from the closed form wave equation for the bi-material rod for the case of the 42 inch
aluminum rod and cylindrical putty lengths encompassing all test cases are shown in
Fig. 4. The figure also shows the predicted natural frequencies for the simple added
mass model. Clearly, the putty plugs acted as rod-like additions in their effect on the
natural frequency of the rods.
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3. Analysis

The system under test was modeled as an elastic rod attached to a linearly vis-
coelastic rod of tapering cross-section. The tapering was assumed to be sufficiently
gradual that only axial deformations would result.

The resulting computational problem is that of evaluating the dynamic impedance
at the driving point of a rod of linearly viscoelastic material, and then finding the
complex frequency at which the impedance matches that of the elastic rod to which
the viscoelastic rod is attached.

Letting
u(xt) = Im{etv U(x, A) (1)

and
a(X, t) = }Imei\E(A)U(x, A),. (2)

the equation for extensional vibration of the viscoelastic rod becomes:

( A(x)E*(A)U(x,A),. ),, + A(x) A2 pU(x,A) = 0 (3)

subject to the no-stress boundary condition on the right:

E*(A)U(x,A),, I.=L - MA 2 U(x,A) =L = 0 (4)

and the matched-displacement condition on the left:

U(xA)I.o = 1 (5)

In the above, u(x, t) is the axial rod displacement at time t and location x;
a(x, t) is the axial stress at t and x;

A(x) is the cross-sectional area at x;
M is whatever mass is attached to the free end of the rod;
A is the complex frequency;
E*(A) and p are the complex Young's modulus and density;

and L is the length of the viscoelastic rod.

The notion of complex modulus is discussed in Ref. [2].

The solution, U(x, A), of Equation 3 subject to the boundary conditions of Equa-
tions 4 and 5 for a given complex frequency A defines a dynamic impedance

F (A) = E*(A) U(x, A),., 1=o/ U(x, A)I,=o (6)
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at the driving point of the rod. It is the matching of this impedance to a corresponding
impedance of the attached elastic rod which defines the complex eigenfrequencies of
the combined system.

Numerical solution of Equation 3 subject to its boundary conditions at x = 0
and x = L at a given complex frequency A is straight-forward provided that E*(A) is
known.

Using a standard Galerkin formulation to discretize Equation 3 where U is repre-
sented as

U(X,A\) = U.()h.(x) (7)
nodes n

one obtains for each basis function hn(x):

0 = {h,(x) (A(x)E*(A)U,.), +h.(x)\ 2 pU(A) }dx (8)

0

(Ref. [1] contains a good discussion of these methods.) After substitution of Equation 7
into the above equation, and an integration-by-parts, the following system of equations
involving the nodal variables Urn is obtained (one equation for each "n"):

0= hn(L) A(L) E(A) U(x, A),. I=L
-hn(O) A(O)E(At)U(x,A),.,J=oL

+ I {-E*(A) h,(x),. (A(x) h,(x)),. U,,(.\)
nodes In

+A(x) A' p hn(x) h,(x) U,} dx (9)

The boundary conditions (Equations 4 and 5) are integrated into the above system of

equations as follows: occurrences of E'(A) U(x, A),. I,=L are replaced by MA2 U(x, \).=L;

and the equation associated with the node at x = 0 is replaced by the boundary con-

dition of Equation 5. Occurrences of U(x, A),=L and U(x, A).=o are replaced by the

corresponding sums of Equation 7.

In our numerical implementation of the above system of equations, the traditional

tent-shaped basis functions are used and a tridiagonal system of equations with complex

coefficients results. Solution of that system of equations provides the displacement field

U(z, A) as represented in Equation 7, which when substituted into Equation 6, provides

numerical values for F,(A) for the complex frequency, A, considered.

The impedance of the attached elastic rod is:

Fe (A) = -(A.Ee/Le) (rA ) tan(r A) (10)
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where Ae is the cross-sectional area of the elastic rod;
E, is the Young's modulus of the elastic rod;
L. is the length of the elastic rod;
r = _I&

and p, is the density of the elastic rod.

One would impose a force balance between the elastic rod and the viscoelastic
plug by requiring that

F (A) = F.(A) (11)

and solving for the complex frequency A that makes Equation 11 true. Such a frequency
would be an eigen frequency of the combined system. In the above equation, F(A) is
evaluated to make proper sense of the sign of the axial force.

At this point, it is necessary to introduce two serious assumptions.

" Since EO(A) is known for only real A, the following assumption is invoked:

F. (A) = F, (Re{A)) (12)

(Note that though the argument in the above equation is real, the resulting
impedance is still complex.)

" Since the mass of the plug is very small compared to that of the rod, we further
assume that the system eigen frequency will be close enough to that of the rod
alone(w7.d), that we may assume that

F.,(A) = F(w.,) (13)

The resulting approximate equation:

F,(A) = F,,(W.od) (14)

is solved for A with a Newton iteration.

We hope to remove the above simplifications in future work, using analytic con-
tinuation to estimate complex moduli at complex frequencies from the storage and loss
moduli of real frequencies.

It is emphasized that the above Fourier technique is not the damping matrix
method of Ref. [4] in which a "small viscoelasticity" assumption is invoked.
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4. Discussion of Results

The comparisons between the test and analysis results for both natural frequency
and damping ratio are shown in Figures 5-10. The natural frequency results, shown
in Figures 5 and 6, indicate that the analysis was very good in predicting the natural
frequency except for the case of the 6 gram cone. The code predicted that the 6 gram
putty cone would have a resonance at about 3000 Hz which the test did not reveal. The
authors do not feel that this is due to a serious error in the modeling of the physical
mechanism, but probably is an error in the geometric modeling of the cones. The
modeling of the large cone was not as critical as the small cone since the large cone
did not have a resonance in the frequency band of interest.

The test results for the damping ratio are shown in Figures 7 and 8. These figures
compare equal masses of putty applied as cylinders and cones. In each case, the cones
provided more damping than did an equal mass of putty shaped as a cylinder. The
comparisons between test and analysis results for the damping ratios are shown in
Figures 9 and 10. The analysis predicted the trends for all cases except for the 6
gram cone. Just as with the natural frequency comparison, the model predicted a
resonance of the 6 gram cone at about 3000 Hz which was not observed in the tests.
The analysis did predict the higher damping of the cones which was observed in the
tests; however, a physical interpretation of this result has not been obtained. The
analytically predicted damping ratios did not agree precisely in magnitude with the
test results. The predictions were generally larger than the test values, occasionally by
as much as a factor of three. These discrepancies can be attributed to uncertainties in
the values of the material properties and to approximations in the modeling. We do
not feel that they indicate severe errors in the analysis.

The damping of the aluminum rods without any putty was quite small. The
damping ratios obtained for the bare aluminum rods were about 0.0001. This value is
consistent with Zener Thermal Relaxation Theory [6] and with test data from Rogers
[3]. Comparing this value with the damping ratios shown in Table 1, it is clear that
the putty significantly increased the damping of the rods.
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5. Conclusions

The current work may be summarized with a few conclusions. First, the addition

of the synthet;c putty does add damping to the aluminum rods, and the putty plug
may be adequately modeled as a viscoelastic addition to the rod. Second, the shape of
the putty plug is important for the amount of damping obtained. Conical shapes give
greater damping for a given mass of putty than do cylindrical shapes.

This damping mechanism is distinct from methods such as the constrained layer

method in that it depends on inertial loads to cause the strains in the viscoelastic

material. The viscoelastic material is optimally placed at a location of maximal ac-
celeration on the main structure, not necessarily at a location of high strain. Such a
placement was demonstrated in the experiments described here.

That the viscoelastic plug is most effective as a damper when its natural frequency
is close to that of the rod, and that the plug's impedance changes drastically with fre-
quency near its own resonance, undermine the utility of the assumptions which are
embodied in Equation 13. Future work will be aimed toward removing these assump-
tions, to solve the full nonlinearity of Equation 11.
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7. Tables and Figures

Rod Mass of Shape of Natural Damping Undamped
Length Putty Putty Frequency Ratio Natural
(inches) (grams) (Hz) Freq. (Hz)

24 19.1 Cylinder 4086 0.011 4108
24 19.1 Cone 4076 0.0088 4108
24 6.0 Cylinder 4055 0.0065 4108
24 6.0 Cone 4058 0.0085 4108
30 19.1 Cylinder 3281 0.0102 3294
30 19.1 Cone 3275 0.0088 3294
30 6.0 Cylinder 3258 0.0027 3294
30 6.0 Cone 3259 0.0043 3294
36 19.1 Cylinder 2729 0.0084 2740
36 19.1 Cone 2726 0.0093 2740
36 6.0 Cylinder 2715 0.0022 2740
36 6.0 Cone 2716 0.0028 2740
42 19.1 Cylinder 2340 0.0080 2348
42 19.1 Cone 2336 0.0100 2348
42 6.0 Cylinder 2330 0.0015 2348
42 6.0 Cone 2331 0.0025 2348
48 19.1 Cylinder 2045 0.0085 2052
48 19.1 Cone 2042 0.0100 2052
48 6.0 Cylinder 2038 0.0010 2052
48 6.0 Cone 2038 0.0015 2052

Table 1. Test results for natural frequency and damping ratio.
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Storage and Loss Shear Moduli for the synthetic putty

Scotch Seal 1279 (Tref=30C)
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Figure 1. Master curve for the synthetic putty.
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Figure 2. Test configuration.
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ALUMINUM RODS WITH ADDED SYNTHETIC PUTTY CYLINDERS
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Figure 5. Comparison of frequency prediction of model with test
for cylinders.
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Figure 6. Comparison of frequency prediction of model with test
for cones.
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ALUMINUM RODS WITH SYNTHETIC PUTTY ADDED
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Figure 7. Damping ratios for rods with 19.1 grams of putty.
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Figure 8. Damping ratios for rods with 6 grams of putty.
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Optimization of Dynamic Vibration Absorber
-Case of Cantilever Boring Bar

E. I. Rivin, H. L. Kang
Department of Mechanical Engineering

Wayne State University
Detroit, MI 48202

Abstract

Passive dynamic vibration absorbers (DVAs) are very popular for vibration
control/enhancement of effective damping in various structures. This paper
describes techniques which allow one to substantially enhance the effectiveness
of DVAs, specifically for long overhang cantilever structures (on the example of
cantilever buring bar). A so-called combination structure is designed, in which
the root segment is made of a high stiffness material, while the overhang segment
is made of a light material. Optimization of such a structure results in a stiff
but light system with greatly increased dynamic stiffness Kt Optimal parameters
of a DVA for main mass u der self-excited vibration and random excitations are
discussed. Test results are given for an optimized combination boring bar and
DVA parameters with length-to-diameter ratio L/D=15.

1. Introduction

Passive dynamic vibration absorbers (DVAs) are very popular for vibration
control/enhancement of effective damping in various structures. In boring bars,
like in many other cantilever structures, vibrations are easily developed due to
their weakness in both structural stiffness a-A damping, and thus DVAs are often
used. But, due to the intrinsic limitations of the space available for installation
of inertia mass, the mass ratio is limited and the DVAs often have curtailed
efficiency. Thus, boring bars with length-to-diameter ratios exceeding LID=9-10
were generally considered not feasible. This paper wIll describe several techniques
which allow one to enhance effectiveness of a DVA for 1cng overhang cantilever
structures, specifically for cantilever boring bars.

A so-called combination cantilever bar was designed (I], in which the root segment
is made of a high stiffness material, possibly having high specific density, while
the overhang segment is made of a light material, possibly having a low Young
modulus. Optimization of such a structure resulte in a rigid but light s-stem,
usually with greatly increased natural frequency and mass ratio of DVA, and with
reduced usage of expensive materials.

Self-excited vibrations and random excitations ire often encountered in structural
vibrations, especially in the cutting processes, and they are the main fact irs of
system Instability. Classical (DenHartog 121) optimization for DVAs' parameters is
based on a case of harmonic external excitation applied to th, main rass. Frequently,
however, optimal parameters for this case are considered as a universal approach
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for DVAs' design. It will be shown that for other practical cases, such as random
excitation of the main mass and the case of self-excited vibrations, optimal
parameters of a DVA are quite different.

Test results will be given which show that a boring bar designed as an optimized
combination structure and furnished with'a properly optimized DVA demonstrates
substantially lower vibration amplitudes during cutting and can operate with
L/D=15. The proposed concept are applicable for a wide range of cantilever
structures.

2. DVA attached to the main mass which is under self-excitation conditions

In the self-excited vibrations case the alternating force that sustains the motion
is created or controlled by the motion itself; when the motion stops the alternating
force disappears. The general expression of the dynamic cutting force can be
written as 131:

F. =dX, Sdt

where Kcx is stiffness coefficient and Ccx is damping coefficient, and Kcx, Ccx can
be defined as "effective cutting stiffness" and "effective cutting damping",
respectively. At some combinations of parameters, force (1) can lead to self-
excitation of vibrations.

Dynamic vibration absorber can be modeled as a absorber mass Mz attached by
a spring with stiffness K2 and a damper C2 to the main system whose mass Mi
is subjected to the excitation force F(t). A model of the main mass with a damped
vibration absorber is given in Fig.1 where Ki and Ci are stiffness and damping
of the main mass.

Equations of motion of this system can be written as:

X 2(,I, w I -t' .)X: '" + C)XwI± (2)

. 2+ Y o.. - 2k w, X, - Wf-X, 0 (3)

with
K - K- M 2  C, C2

(A: -Z-= , W . -2k,; 2k2I 2 2 M, II1  K / 2 M 2

where X1, X2 are vibration amplitudes of the main mass and absorber, (A), (A) are
partial natural frequencies of the main mass and absorber subsystem, ti is the
mass ratio of absorber mass to main mass, and k I-2 are damping ratios of the
main mass and absorber subsystems, respectively.

By letting F(t)F.. for the exciting force in the equation (1), the system char-
acteristic equation from the equations of motion becomes:
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S4+ B 3 S 3 + B S 2 + B S+8 0 -0 (4)

where
B3 - 2( .w+ ZW2(0 + +)

B2 = w2-w22( )+4. ~w

B,- 2(k.ww 4 2 GO2W 2 )
B o = W2o

K +  lK,  G 2: C l C '." f

M ,W M,

Here w is the self-excited vibration frequency which is close to but different
from the natural frequency of the main mass subsystem (due to addition of Kcx)
and k, is damping ratio of the main mass subsystem during cutting. Parameter
t. combines the damping of the main mass (always positive) and effective damping
from the expression for the dynamic cutting force (1). The latter can be positive,
thus assuring an unconditional dynamic stability of the system, or negative,
which then should be compensated by the positive damping of the main mass and
by the stabilizing effects of the absnrber in order to achieve stable conditions.
Thus, effectiveness of the absorber can be judged by the critical value of E,
which corresponds to the stability boundary of the system. And the maximum
effectiveness of the absorber can be characterized by the maximum magnitude
of negative critical value of ., which the absorber can still compensate.

Routh stability criterion states that for a system to be stable, all the coefficients
of the characteristic equation must be positive and also must satisfy inequalities
121:

Bi B2 B3 > B12+B 2 Bo (5)

From the former requirements, we arrive to conditions:
'.>-rW (1 'p (6)

> - 2-- 4 I r I ) (7 )

> 2

r

where
WG2

is frequency ratio of the partial frequency of the absorber subsystem to the
self-excited vibration frequency of the main mass.

The critical value of , can be obtained by replacing (6)-(8) with equalities, from
which the largest value can be determined and then checked with equation (5).
If the latter is not satisfied, the critical value of , can be determined by iterations
to satisfy (5).
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Fig.2 gives the critical value of k, at various mass and frequency ratios of the
absorber. It can be seen that at a given mass ratio and damping ratio of absorber,
there exists a optimal (tuning) frequency ratio wjw, at which critical negative
value of , has maximum magnitude (maximum effectiveness of the absorber).

The influence of absorber damping on system stability under optimal frequency
ratio conditions can be seen in Fig.3. If the absorber damping is too low, it will
result in a poor system stability because of small effectiveness of absorber. If
the absorber damping is too high, it also gives poor system stability because
the absorber mass is in fact locked together with main mass and low effectiveness
will result. There is an optimal damping of the absorber which gives the maximum
negative value of k and results in the main mass remaining stable at higher
magnitudes of negative damping induced by the cutting process for a given mass
ratio.

Fig.4 gives the influence of mass ratios on system stability under both optimal
frequency and optimal absorber damping ratio. It is obvious that the higher mass
ratio, the better system stability.

The optimal frequency ratio at the optimal absorber damping condition will be
called the global optimal frequency ratio. Since the absorber damping in practical
designs may not be optimal, the optimal frequency ratio at this situation can be
called a locally optimal, which means that if a value of absorber damping which
is not optimum is used, the local optimal frequency ratio has to be chosen for
absorber to be the most effective at this damping. Optimal absorber damping and
global optimal frequency ratio for a given mass ratio are shown in Fig.5 and
Fig.6 together with the results for random (see below) and sinusoidal [21 excitations.

3. DVA attached *to the main mass which is under random excitation conditions

Here optimal tuning parameters will be discussed for a case of random excitation
having white noise characteristics with a constant spectral density function So
and zero memory. In real circumstances random signal is rarely constant over
the frequency range 0- -, but it is frequently constant over a wide frequency
band. Thus white noise excitation is used in the analysis as an approximation of
typical random signals. The frequency response method is used to get the mean
square response of the system 141.

In order to get the frequency response functions Ht(w) and H2(W), let:

F (t) (9)
M ,

X I H(e (10)
X2 - H2(w)e ' ' °  (I1)

Then substituting above expressions and their derivatives Into equations of motion
(2) and (3), the frequency response functions can be written as follows:
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H2 + 2 2 W 2 ( iW) + (iw) 2

A 0 + A I (Lw)- A 2 (iW) 2'- A 3(iW)"s (i))' (12)
where

A3 =2(t 1w + k2 w 2 ( 1 + pi))

1  2 2

A0 = 2

and
W2 

4 2wO:w) 
H,)

The mean square response of the mass Mi under the white noise excitation Is
then given as:

EH(w)1 2 S,.dw (14)S -,

which represent the total energy of the main system after attachment of a dynamic
vibration absorber. For the main system without dynamic vibration absorber, the
frequency response function is:

H ., w (15)H, i uCo ) = v + 2 w (iw) + w 1

The mean square response can also be given by equation (14) in which Hio(w) Is
used. A non-dimensional normalized mean square response of the main subsystem,
i.e. the ratio of mean square response of Mi with absorber to mean square response
of Mi without absorber, which reflects effect of the absorber on the main mass,
is then defined as:

E(X2) 3A (16)

where
A = -AoA, - 0.A,(4 tu-2w2)+wt(A,- AA , )

R= A,(AA!'y- A-A,A.A,)

The calculation results of the normalized mean square response of the main mass
are given in Fig.7 for a main system damping ratio E, =0.02. Since the mean
square response represents the total energy of the system over the entire
frequency range, the normalized mean square response gives the total energy
ratio of the response of the main mass Mi but not the response itself. The larger
the value of the normalized mean square response, the larger is response of the
main mass and the lesser effect of the absorber on the main system behavior.
Influence of mass ratio on the local optimal frequency ratio is similar to the case
of self-excited vibration, but the different values of the optimal frequency ratios.
Computed optimal global frequency ratio and optimal absorber damping ratio are
plotted in Fig.5 and Fig.6.
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A mass With dynamic vibration absorber under sinusoidal excitation has been
analyzed by J. P. DenHartog 121 where he considered the case with zero main
system damping which is a good approximation for the system: cantilever bar
with damped vibration absorber.

Comparing optimal tuning and damping conditions under various excitations in
Fig.5 and Fig.6, it can be seen that at the same mass ratios, the required optimal
absorber damping values are the lowest for the case of white noise excitation,
and the highest for the case of sinusoidal excitation. The required optimal
frequency ratios are the lowest for the case of sinusoidal excitation and the
highest for the case of self-excited vibrations. For the case of cantilever boring
bar, since both self-excitation and random excitation exist during cutting process
151, the optimal tuning values for the frequency ratio and damping could be
chosen in between of the optimal values shown in Figs.5,6 for cases of self-excitation
and random white noise excitation.

4. Optimization of combination cantilever bar

A combination bar of length L with sintered carbide in the root segment (length
L) and aluminum in the free end segment (solid part of length L2 and hollow
part of length L3), shown in Fig.8, was analyzed. The absorber made of heavy
machinable tungsten alloy is located in the hollow part of the free end as shown
in Fig.9. An optimization procedure was applied to choose parameters Li, L2, and
L3 in order to have the highest dynamic stiffness Kk of the cantilever bar, where
K is static stiffness and k is effective damping ratio of the main mass subsystem
since both damping and stiffness are Important for the system stability.

The Rayleigh expression for fundamental natural frequency of the system without
absorber was used [I],

f E (z)/CZ), -, dZ

W1 .- (17)

form(z)x2dz + Mx2

where E(z) is Young's modulus, 1(z) is moment of inertia of the cross section,
m(z) is mass per unit length, and all these parameters are considered as function
of z (coordinate along the axis of the cantilever bar). Mt Is mass at the free end,
x is vibration amplitude of cantilever bar (a function of z), and xi is vibration
amplitude at the free end of cantilever bar.

The effective mass at the length Lo=L-L3/2 which is the midpoint of the absorber
cavity L3 is 1I:

ro E~z(z)C ) ) d
Ad J0 ," (18)

2o 2

The effective stiffness at Lo then is:
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K, -w2M, (19)

To determine the effective stiffness at the tool end, the effective mass at the
length L should be determined. The approximate fundamental mode shape of the
cantilever bar to be used in the Rayleigh formula (17) is assumed to be:

X(Z)= -cos. - (20)

which satisfies the boundary conditions for this mode.

A combination cantilever bar and a steel bar were analyzed and compared. The
parameters used for combination bar are: outside diameter D=l.25 in (31.75 mm),
for carbide segment: E=80,000,0001b/in (55 N/cm ), specific gravity p 1=0.516 lb/in
(0.01428 Kgicm ). for aluminum segment: inside diameter d3=1.0 in (25.4 mm),
E=10,000,OO01b/in (7 N/cut ), specific gravity po,0.09384lb/in (0.0028 Kg/cm );
for steel bar: E=28,600,000lb/in (19 N/cm ), specific gravity p=0.28 lb/in (0.008
Kg/cm ). Mass at the free end is Mt=O.00048571b-sec 2/in (0.085 N-sec"/m), material
for absorber mass is machinable tungsten with specific gravity p =0.6497 lb/in
(0.01798 Kg/cm )and lengths L3=4,5,6 in (0.1,0.13,0.15 m) wpre chosen for the
cantilever bar with the overall length L=18 in (0.457 m).

By calculating stiffness values at tool end Kt and critical value of k. of the
combination boring bar with damped vibration absorber under optimal tuning and
damping conditions, the performance index K , vs Li/L ratios can be obtained as
shown in Fig.10. Since both higher stiffness Kt and more negative critical value
of E, give better cutting process stability, higher magnitudes of absolute value
of the performance index (dynamic stiffness) are corresponding to a better
stability of the system. It can be seen that Li/L in the range 0.45-0.6 corresponds
to the best "stability of the boring bar. It has been shown 16) that for Li/L=0.45,
it corresponds to the highest natural frequency of the combination bar, and for
Li/L=0.6, the combination bar with damped vibration absorber has the minimum
vibration amplitude under harmonic excitation.

The results of natural frequency f, stiffness at free end Kt, and mass ratio of
absorber ± for the combination cantilever bar at Li/L=0.45 and for the steel bar
with the same dimension are given In Table-i. It can be seen that values of all
this three parameters for the combination bar are about double of the values
for the steel bar. Such increase in natural frequency and stiffness should improve
dynamic performance of the cantilever structure, and the increase in absorber
mass ratio makes the absorber more effective for a given limited absorber mass.

6. Cutting test using combination boring bar

A combination boring bar of 1.25 in (31.75 mm) diameter and 18.75 in (476 mm)
long (L/D=15) was designed with parameters L3=6 in (152 mm) and Li/L0.6. Rubber
resilient elements were used which provide both necessary compliance and damping
for the absorber. Absorber frequency tuning can be done by adjusting the screw
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which results in preloading of the rubber elements. The absorber mass ratio is
Ltl1.07. The damping ratio of the boring bar is t=0.02 and damping ratios of
absorber k. are 0.07, 0.18, and 0.45 for three rubberlike materials used. Natural
frequency of the boring bar is ft=173 Hz. The recommended tuning frequencies
for absorber are about 84 Hz in case of sinusoidal excitation, 105 Hz in case of
random excitation, and 117 Hz in case of self-excited vibrations.

Vibration displacements of the boring bar in horizontal (x) directions were
measured by LVDT at the distance 13.5 in (342 mm) from the clamp (since the
measurement of the tool end vibration is impossible during the cutting). Defor-
mations both at LVDT and at the tool end under static load were measured and
it was shown that displacement at the tool end is about 1.91 times of displacement
at the LVDT position. This factor was used as an approximation to get vibration
displacements at the tool end from measured values from LVDT.

Table-2 gives maximum vibration peak-to-valley (p-v) values at the tool end for
the boring bar without absorber and for the boring bar with damped vibration
absorber having various absorber damping and tuning adjustments. The results
show substantial improvements of cutting conditions while using boring bar with
dynamic vibration absorber as compared with the original boring bar. The results
show that if tuning at the local optimal frequency ratio at a given damping of
rubber was realized according to the self-excitation and random white noise
excitation case, smaller vibrations were observed (10-30%lower p-v values), as
compared with cases of tuning as recommended for sinusoidal excitation 121. it
was also observed that when damping of the absorber is closer to the optimal
damping values, the vibration amplitudes are smaller.

6. Conclusions

1. A combination cantilever bar with high rigidity material in the root segment
and light weight material in the free end segment has much higher natural
frequency, stiffness, and mass ratio of DVA compared with steel bar, which results
in a higher dynamic stiffness (better dynamic performance) and higher effec-
tiveness of dynamic vibration absorber.

2. The optimal tuning conditions and damping values of DVA are different for
cases when the main mass is under self-excitation and under random excitation
, than the classical case of sinusoidal excitation. Optimal tuning/damping parameters
for actual cutting thus should be chosen accordingly. When absorber damping
deviates from the obtained optimal values, the local optimal frequency ratios
should be used for maximum effectiveness of absorber.

3. The cutting test results confirmed that the best results are obtained when
absorber is tuned in accordance with the self-excitation/random excitation cases
(smaller vibration amplitudes were recorded). The reasonably good results were
obtained for a combination boring bar with length-to-diameter ratio L/D=15.
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L3 (in) Bars Frequency (Hz) Stiffness (lb/in) Mass ratio

4 Combination 275 3939 1.41
Steel 133 1776 0.73

5 Combination 283 3935 1.77
Steel 138 1764 0.94

6 Combination 289 3929 2.07
Steel 143 1746 1.14

Table-i Calculated natural frequency, stiffness, and mass
ratio for combination bar (Ll'L=0.45) and steel bar

Absorber Spindle Max. Peak -to-Vally Value (X- Direction)
Damping Speed Tuned Tuned Tuned No
Ratio (rpm) under Se under Ra under Si Absorber

0.07 80 0.00177 0.00156 0.00192 0.00324
0.07 130 0.00184 0.00137 0.00241 0.00561
0.07 210 0.00265 0.00228 0.00371 0.00721
0.18 42 0.00079 0.00085 0.00114
0.18 80 0.00104 0.0012 0.00121
0.18 130 0.00118 0.00144 0.00167

Se: Self-excited Vibration; Ra: Random Excitation;
Si: Sinusoidal Excitation

Table-2 Maximum p-v values (inches) of boring bar under various
cutting speed, absorber damping, and tuning conditions
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